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RUDIN–SHAPIRO SEQUENCES ALONG SQUARES

CHRISTIAN MAUDUIT AND JOËL RIVAT

Abstract. We estimate exponential sums of the form
∑

n≤x f(n2)e(ϑn) for

a large class of digital functions f and ϑ ∈ R. We deduce from these estimates
the distribution along squares of this class of digital functions which includes
the Rudin–Shapiro sequence and some of its generalizations.

1. Introduction

For x ∈ R, we denote by ‖x‖ the distance of x to the nearest integer, and we
set e(x) = exp(2iπx). We denote by U the set of complex numbers of modulus
1. If f and g are two functions taking strictly positive values such that f/g is
bounded, we write f = O(g) or f � g. For n ∈ N, we denote by τ (n) the number
of divisors of n and by ω(n) the number of distinct prime factors of n. Throughout
this work we denote by q an integer greater or equal to 2. Any n ∈ N can be
written in base q as n =

∑
j≥0 εj(n)q

j with εj(n) ∈ {0, . . . , q − 1} for any j ∈ N.

If � = max{j : εj(n) �= 0}, we denote by repq(n) = ε�(n) · · · ε0(n) the q-adic
representation of the integer n.

1.1. Representation of squares in base q. There exists no simple algorithm to
decide whether an integer is a square or not given its representation in base q. It
follows from the work of Büchi concerning second-order weak arithmetic that the
set of squares cannot be recognizable by a finite automaton (see [12]). Ritchie gave
in [39] a very elegant proof of this result in the case of base q = 2, and Minsky
and Papert showed in [33] the nonrecognizability of any zero density sequence of
integers (un)n∈N such that limn→∞ un+1/un = 1 (see also [14]). These facts explain
why only a few results are known concerning the q-adic representation of squares
or powers. Davenport and Erdős showed in [16] the normality of the real number
whose q-adic representation is 0. repq(P (1)) · · · repq(P (n)) · · · when P is an integer
valued polynomial. When sq is the sum-of-digits function in base q, and d is an
integer, where d ≥ 2, Peter gave in [35] very precise informations about the behavior
of

∑
n≤x sq(n

d), and Bassily and Kátai studied in [4] the limit distribution of the
sum-of-digits function along polynomial sequences.

Many important works concern the study of subsequences along squares or along
integer valued polynomials since the questions asked by Bellow [5] and Furstenberg
[21] and the proof by Bourgain in [7–9] of a pointwise ergodic theorem (see also
in particular [6], [13], [22], [23]). We introduced in [29] a new method which gives
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upper bounds for the exponential sums
∑

n≤x e(sq(n
2)α) (see [18] for a generaliza-

tion to a larger class of digital sequences and [17] for higher-degree polynomials and
large enough base q). One of the main ingredients of this method is to establish
that the L1-norm of the discrete Fourier transform of the sequence (e(sq(n)α))n∈N

is very small. Unfortunately, this property is generally not true for other digital
sequences and, in particular, for Rudin–Shapiro sequences, and the goal of this
paper is to present another method to study exponential sums associated to digital
sequences.

1.2. Rudin–Shapiro sequences and dynamical systems. For any sequence
(rn)n∈N in {−1,+1}N we have

sup
ϑ∈[0,1]

∣∣∣∣∣∑
n<N

rn e(nϑ)

∣∣∣∣∣ ≥
⎛⎝∫ 1

0

∣∣∣∣∣∑
n<N

rn e(nϑ)

∣∣∣∣∣
2

dϑ

⎞⎠1/2

=
√
N.

Shapiro in 1951 (see [42]) and then Rudin in 1959 (see [40]) gave examples of
a sequence (rn)n∈N in {−1,+1}N for which there exists a positive constant c such
that for any positive integer N we have

sup
ϑ∈[0,1]

∣∣∣∣∣∑
n<N

rn e(nϑ)

∣∣∣∣∣ ≤ c
√
N

(see [42], [32], [2], or [36, Proposition 2.2.3] for c = 2+
√
2, [41] for c = (2+

√
2)
√

3
5 ,

and [11] for the proof that c ≥
√
6). This sequence, called Rudin–Shapiro sequence,

can be defined for any n ∈ N by

rn = (−1)
∑

i≥1 εi−1(n)εi(n)

(see [10, Theorem 4]), and it plays an important role in many problems in harmonic
analysis (see for example [25, Chapitre X]) and in ergodic theory. In particular the
existence of an ergodic transformation with Lebesgue spectrum of given finite mul-
tiplicity � is an open problem for which the case � = 1 seems to be a very difficult
question attributed to Banach. Queffélec showed in [38] (see also [37, Chapter VIII,
section 2.2]) that the continuous part of the Rudin–Shapiro spectrum is Lebesgue
with multiplicity equal to 2, and Lemańczyk, using more general sequences, ob-
tained in [27] the Lebesgue spectrum with any given even multiplicity (see also
[20]). Connes and Woods introduced in [15] the notion of approximate transitivity
of a group action on a measure space in connection with some classification prob-
lems of factors of type III0 in the theory of von Neumann algebras. El Abdalaoui
and Lemańczyk proved in [19] that the Rudin–Shapiro dynamical system (as well
as all the examples from [28] having even Lebesgue multiplicity) does not have the
approximate transitivity property. The Rudin–Shapiro sequence is also linked to
the one-dimensional Ising model [3], to Peano curves [32], and to brownian mo-
tion [26]. There are different ways to generalize Rudin–Shapiro sequences (see for
example [1]), and in section 7 we will focus on the two following ways.
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Definition 1. For any α ∈ R and δ ∈ N, the sequence (rδ(n, α))n∈N defined for
any n ∈ N by

rδ(n, α) = e

⎛⎝α
∑

k≥δ+1

εk−δ−1(n) εk(n)

⎞⎠
is called a Rudin–Shapiro sequence of order δ.

Definition 2. For any α ∈ R and d ∈ N with d ≥ 2, the sequence (Rd(n, α))n∈N

defined for any n ∈ N by

Rd(n, α) = e

⎛⎝α
∑

k≥d−1

εk−d+1(n) · · · εk(n)

⎞⎠
is called a Rudin–Shapiro sequence of degree d.

In [24] Kahane used generalized Rudin–Shapiro sequences of order δ with α = 1/2
to construct a brownian quasi-screw in a finite-dimensional euclidian space.

2. Statement of the results

For f : N → U and any λ ∈ N, let us denote by fλ the qλ-periodic function
defined by

(1) ∀n ∈ {0, . . . , qλ − 1}, ∀k ∈ Z, fλ(n+ kqλ) = f(n).

Definition 3. A function f : N → U has the carry property if, uniformly for
(λ, κ, ρ) ∈ N3 with ρ < λ, the number of integers 0 ≤ � < qλ such that there exists
(k1, k2) ∈ {0, . . . , qκ − 1}2 with

(2) f(�qκ + k1 + k2) f(�qκ + k1) �= fκ+ρ(�q
κ + k1 + k2) fκ+ρ(�qκ + k1)

is at most O(qλ−ρ) where the implied constant may depend only on q and f .

In [31] we introduced a new method to study the distribution of prime numbers
along a large class of sequences with digit properties and uniformly small discrete
Fourier transforms in the following sense.

Definition 4. Given a nondecreasing function γ : R → R satisfying limλ→+∞ γ(λ)
= +∞ and c > 0, we denote by Fγ,c the set of functions f : N → U such that for
(κ, λ) ∈ N2 with κ ≤ cλ and t ∈ R,

(3)

∣∣∣∣∣∣q−λ
∑

0≤u<qλ

f(uqκ) e (−ut)

∣∣∣∣∣∣ ≤ q−γ(λ).

The goal of this paper is to show that the method introduced in [31] can be
adapted to the study of the distribution of squares for any base q ≥ 2.

Theorem 1. Let γ : R → R be a nondecreasing function satisfying limλ→+∞ γ(λ) =
+∞, and let f : N → U be a function satisfying Definition 3 and f ∈ Fγ,c for some
c ≥ 18 in Definition 4. Then for any ϑ ∈ R, we have

(4)

∣∣∣∣∣∣
∑

0<n≤x

f(n2) e(ϑn)

∣∣∣∣∣∣ �f,q (log x)ω(q)+2
(
xq−

γ(2�(3 log x)/(100 log q)�)
56

)
,

where the absolute constant implied depends only on f and q.
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Remark. Theorem 1 gives a nontrivial result if

(5) lim inf
λ→∞

γ(λ)

log λ
>

56 (ω(q) + 2)

log q
.

3. Notations and preliminary tools

For a ∈ Z and κ ∈ N, we denote by rκ(a) the unique integer r ∈ {0, . . . , qκ − 1}
such that a ≡ r mod qκ. More generally for integers 0 ≤ κ1 ≤ κ2, we denote by
rκ1,κ2

(a) the unique integer u ∈ {0, . . . , qκ2−κ1−1} such that a = kqκ2+uqκ1+v for

some v ∈ {0, . . . , qκ1 − 1} and k ∈ Z. We notice that we have rκ1,κ2
(a) =

⌊
rκ2

(a)

qκ1

⌋
and for any u ∈ {0, . . . , qκ2−κ1 − 1},

(6) rκ1,κ2
(a) = u ⇐⇒ a

qκ2
∈
[

u

qκ2−κ1
,
u+ 1

qκ2−κ1

)
+ Z.

For a ≥ 0, rκ(a) is the integer obtained from the κ least significant digits of a, while
rκ1,κ2

(a) is the integer obtained using the digits of a of index in {κ1, . . . , κ2 − 1}.
For α ∈ R with 0 ≤ α < 1, we denote by χα the characteristic function of the

interval [0, α) modulo 1,

(7) χα(x) = �x� − �x− α� .
For any integer H ≥ 1 it follows from [43, Theorem 19] that there exist real-valued
trigonometric polynomials Aα,H(x) and Bα,H(x) such that for all x ∈ R,

(8) |χα(x)−Aα,H(x)| ≤ Bα,H(x),

where

(9) Aα,H(x) =
∑

|h|≤H

ah(α,H) e(hx), Bα,H(x) =
∑

|h|≤H

bh(α,H) e(hx)

with coefficients ah(α,H) and bh(α,H) satisfying

(10) a0(α,H) = α, |ah(α,H)| ≤ min
(
α, 1

π|h|

)
, |bh(α,H)| ≤ 1

H+1 .

For (α1, α2) ∈ [0, 1)2 we can detect the points in the rectangle [0, α1) × [0, α2)
(modulo Z× Z): for integers H1 ≥ 1, H2 ≥ 1, we have for all (x, y) ∈ R2,

|χα1
(x)χα2

(y)−Aα1,H1
(x)Aα2,H2

(y)|(11)

≤ χα1
(x)Bα2,H2

(y) +Bα1,H1
(x)χα2

(y) +Bα1,H1
(x)Bα2,H2

(y),

where Aα,H(.) and Bα,H(.) are the real-valued trigonometric polynomials defined
by (9).

The following lemma is a generalization of van der Corput’s inequality.

Lemma 1. For all complex numbers z1, . . . , zN and all integers k ≥ 1 and R ≥ 1,
we have
(12)∣∣∣∣∣∣

∑
1≤n≤N

zn

∣∣∣∣∣∣
2

≤ N + kR − k

R

⎛⎝ ∑
1≤n≤N

|zn|2 + 2
∑

1≤r<R

(
1− r

R

) ∑
1≤n≤N−kr

� (zn+krzn)

⎞⎠ ,

where �(z) denotes the real part of z.

Proof. See, for example, [29, Lemma 17]. �
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We will often make use of the following upper bound of geometric series of ratio
e(ξ) for (L1, L2) ∈ Z2, L1 ≤ L2 and ξ ∈ R:

(13)

∣∣∣∣∣∣
∑

L1<�≤L2

e(�ξ)

∣∣∣∣∣∣ ≤ min(L2 − L1, |sinπξ|−1
).

Lemmas 2 and 3 allow us to estimate on average the minimum arising from (13).

Lemma 2. Let (a,m) ∈ Z2 with m ≥ 1, and let d = gcd(a,m). Let b ∈ R. For
any real number U > 0, we have
(14) ∑

0≤n≤m−1

min
(
U,

∣∣sinπ an+b
m

∣∣−1
)
≤ dmin

(
U,

∣∣∣sin π d ‖b/d‖
m

∣∣∣−1
)
+

2m

π
log(2m).

Proof. The result is trivial for m = 1. For m ≥ 2 after using [30, Lemma 6] it
suffices to observe that

d

sin πd
2m

+
2m

π
log

2m

πd
≤ 1

sin π
2m

+
2m

π
log

2m

π
≤ 2m

π
log(2m). �

Lemma 3. Let m ≥ 1 and A ≥ 1 be integers, and let b ∈ R. For any real number
U > 0, we have

(15)
1

A

∑
1≤a≤A

∑
0≤n<m

min
(
U,

∣∣sinπ an+b
m

∣∣−1
)
≤ τ (m) U +

2m

π
log(2m).

If |b| ≤ 1
2 , we have the sharper bound

(16)
1

A

∑
1≤a≤A

∑
0≤n<m

min
(
U,

∣∣sin π an+b
m

∣∣−1
)
≤ τ (m)min

(
U,

∣∣sin π b
m

∣∣−1
)
+
2m

π
log(2m).

Proof. Using (14), we have for all b ∈ R,∑
0≤n<m

min
(
U,

∣∣sin π an+b
m

∣∣−1
)
≤ gcd(a,m) U +

2m

π
log(2m),

while for |b| ≤ 1
2 , we have d ‖b/d‖ = |b| with d = gcd(a,m), and using (14), we get∑

0≤n<m

min
(
U,

∣∣sinπ an+b
m

∣∣−1
)
≤ gcd(a,m)min

(
U,

∣∣sin π b
m

∣∣−1
)
+

2m

π
log(2m).

It is enough to observe that∑
1≤a≤A

gcd(a,m) =
∑
d |m
d≤A

d
∑

1≤a≤A
gcd(a,m)=d

1 ≤
∑
d |m
d≤A

d
∑

1≤a≤A
d | a

1 =
∑
d |m
d≤A

d

⌊
A

d

⌋
≤ A τ (m),

which implies (15) and (16) when |b| ≤ 1
2 . �

In order to estimate quadratic Gauss sums, we use the following classical result.

Lemma 4. For all a, b,m ∈ Z with m ≥ 1, we have

(17)

∣∣∣∣∣
m−1∑
n=0

e
(

an2+bn
m

)∣∣∣∣∣ ≤ √
2m gcd(a,m).

Proof. This is [29, Proposition 2]. �
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For incomplete quadratic Gauss sums we have

Lemma 5. For all a, b,m,N, n0 ∈ Z with m ≥ 1 and N ≥ 0, we have

(18)

∣∣∣∣∣
n0+N∑

n=n0+1

e
(

an2+bn
m

)∣∣∣∣∣ ≤ (
N
m + 1 + 2

π log 2m
π

)√
2m gcd(a,m).

Proof. The following argument was already implicit in Vinogradov’s works. For
m = 1, the result is true. Assume that m ≥ 2. There are �N/m� complete sums

which are majorized by
√
2m gcd(a,m). The remaining sum is either empty or of

the form S =
∑n1+L

n=n1+1 e
(

an2+bn
m

)
for some n1 ∈ Z and 1 ≤ L ≤ m. Detecting

whether n ≡ u mod m or not by 1
m

∑m−1
k=0 e

(
k n−u

m

)
, we get

S =
1

m

m−1∑
k=0

n1+L∑
u=n1+1

e

(
−ku

m

)m−1∑
n=0

e

(
an2 + (b+ k)n

m

)
,

thus

S ≤ 1

m

m−1∑
k=0

min

(
L,

∣∣∣∣sin πk

m

∣∣∣∣−1
)∣∣∣∣∣

m−1∑
n=0

e

(
an2 + (b+ k)n

m

)∣∣∣∣∣ .
Applying Lemma 4 with b replaced by b + k and observing (by convexity of
t �→ 1/ sin(πt/m)) that

1

m

m−1∑
k=0

min

(
L,

∣∣∣∣sin πk

m

∣∣∣∣−1
)

≤ 1 +
1

m

∫ m−1/2

1/2

dt

sin πt
m

= 1 +
2

π
log cot

π

2m
,

we obtain (18). �

Let f : N → U and λ ∈ N, and let fλ be defined by (1). The discrete Fourier
transform of fλ is defined for t ∈ R by

(19) f̂λ(t) =
1

qλ

∑
0≤u<qλ

fλ(u) e

(
−ut

qλ

)
=

1

qλ

∑
0≤u<qλ

f(u) e

(
−ut

qλ

)
.

For λ ∈ N and t ∈ R, we have

(20)
∑

0≤h<qλ

∣∣∣f̂λ(h+ t)
∣∣∣2 = 1

so that, if f satisfies (3), then

1 =
∑

0≤h<qλ

∣∣∣∣∣∣q−λ
∑

0≤u<qλ

f(uqκ) e

(
−u(h+ t)

qλ

)∣∣∣∣∣∣
2

≤
∑

0≤h<qλ

q−2γ(λ) = qλ−2γ(λ)

and

(21) γ(λ) ≤ λ

2
.
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4. Carry propagation lemmas

Lemma 6. Let (ν, ν′) ∈ N2 with 1 ≤ ν′ ≤ 2ν. For B ⊆ {0, . . . , q2ν−ν′ − 1}, the
number N of integers n ∈ {qν−1, . . . , qν−1} such that n2 = a+qν

′
b with 0 ≤ a < qν

′

and b ∈ B satisfies

N ≤ cardB + qν
′/2(cardB)1/2.

Proof. We may assume cardB ≥ 1 (otherwise the result is true) and observe that

for each b ∈ B, we must count the n’s such that qν
′
b ≤ n2 < qν

′
(b + 1). It follows

that

N ≤
∑
b∈B

(
1 + qν

′/2
(√

b+ 1−
√
b
))

.

Since t �→
√
t+ 1−

√
t is decreasing, if b0 < b1 < · · · are the elements of B, we have

bj ≥ j, and

N ≤ cardB + qν
′/2

∑
0≤j<cardB

(√
j + 1−

√
j
)
,

and the result follows. �
Lemma 7. Let f : N → U satisfying Definition 3, and let (ν, κ, ρ) ∈ N2 with
3ρ < ν < κ < ν + 2ρ. The set E of n ∈ {qν−1, . . . , qν − 1} such that there exists

k ∈ {0, . . . , qκ − 1} with f(n2 + k) f(n2) �= fκ+ρ(n
2 + k) fκ+ρ(n2) satisfies

(22) card E �f,q qν−
ρ
2 .

Proof. We apply Definition 3 with λ = 2ν − κ. Since 3ρ < ν and κ < ν + 2ρ,
the condition ρ < λ is satisfied. Let B be the set of � < qλ such that there
exists (k1, k2) ∈ {0, . . . , qκ − 1}2 for which (2) is true. By Definition 3 we have
cardB �f,q qλ−ρ. We need to count n ∈ {qν−1, . . . , qν − 1} such that n2 is of the
form n2 = k1 + qκ� with � ∈ B. Applying Lemma 6 with ν′ = κ, we get

card E � cardB + qν
′/2(cardB)1/2 �f,q qλ−ρ + q

κ+λ−ρ
2 � qν−

ρ
2 ,

which gives (22). �
For integers 0 ≤ ν1 ≤ ν2 and fν1

and fν2
defined by (19), we write

(23) fν1,ν2
= fν2

fν1
.

Lemma 8. Let f : N → U satisfying Definition 3 and ν ≥ 0. For ν0 ≤ ν1 ≤ ν ≤ ν2,
the set E of integers n ∈ {qν−1, . . . , qν − 1} such that

fν1,ν2
(n2) �= fν1,ν2

(qν0 rν0,ν2
(n2))

satisfies

(24) card E �f,q qν−ν1+ν0 + q
ν2
2 +ν2−ν1 log qν2 .

Proof. Let B be the set of � ∈ {0, . . . , qν2−ν0 − 1} for which there exists (k1, k2) ∈
{0, . . . , qν0 − 1}2 with

fν1,ν2
(qν0�+ k1 + k2) �= fν1,ν2

(qν0�+ k1),

i.e.,

fν2
(qν0�+ k1 + k2) fν2

(qν0�+ k1) �= fν1
(qν0�+ k1 + k2) fν1

(qν0�+ k1).

For 0 ≤ � ≤ qν2−ν0 − 2, we have 0 ≤ qν0� + k1 + k2 ≤ qν2 − 2. Therefore we
have fν2

(qν0�+ k1 + k2) = f(qν0�+ k1 + k2) and fν2
(qν0�+ k1) = f(qν0�+ k1) for
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0 ≤ � < qν2−ν0 except possibly if � = qν2−ν0 − 1. Since f satisfies Definition 3, it
follows that cardB �f,q qν2−ν0−(ν1−ν0) = qν2−ν1 . Observing that n2 = r0,ν0

(n2) +
qν0 rν0,ν2

(n2) + qν2 rν2,2ν(n
2), we notice that E ⊆ E ′ where E ′ is the set of n’s such

that rν0,ν2
(n2) ∈ B. Then we can write

card E ′ =
∑
�∈B

card{n ∈ {qν−1, . . . , qν − 1}, rν0,ν2
(n2) = �},

which by (6) and (7) can be written

card E ′ =
∑
�∈B

∑
n

χqν0−ν2

(
n2

qν2
− �

qν2−ν0

)
.

Using (8) with H = qν2−ν0 , it follows that there exists ah and bh satisfying (10)
such that

card E ′ ≤
∑
�∈B

∑
n

∑
|h|≤H

(
ah(q

ν0−ν2 , H) + bh(q
ν0−ν2 , H)

)
e

(
hn2

qν2
− h�

qν2−ν0

)
.

The contribution of the terms h = 0 is bounded by

qν+ν0−ν2 cardB �f,q qν+ν0−ν1 .

Exchanging the order of summations and using the bounds given by (10), namely
|ah| ≤ qν0−ν2 and |bh| ≤ H−1 = qν0−ν2 , we obtain the upper bound

card E ′ �f,q qν+ν0−ν1 +
cardB
qν2−ν0

∑
1≤|h|≤qν2−ν0

∣∣∣∣∣∑
n

e

(
hn2

qν2

)∣∣∣∣∣ .
By (18) this gives

card E ′ �f,q qν+ν0−ν1 +
qν2−ν1

qν2−ν0

∑
1≤h≤qν2−ν0

(log qν2)
√
gcd(h, qν2)qν2 .

For any A ≥ 1 and λ ∈ N, we have∑
1≤a≤A

√
gcd(a, qλ) ≤

∑
d | qλ
d≤A

d1/2
∑

1≤a≤A
a≡0 mod d

1 ≤
∑
d | qλ
d≤A

d1/2
A

d
≤

∑
d | qλ

A

d1/2

so that, observing that n �→
∑

d |n d
−1/2 is multiplicative, we get

(25) A−1
∑

1≤a≤A

√
gcd(a, qλ) ≤

∑
d | qλ

1

d1/2
≤ Cq =

∏
p | q

∞∑
k=0

1

pk/2
=

∏
p | q

(1− p−1/2)−1,

and it follows that

card E ′ �f,q qν+ν0−ν1 + q
ν2
2 +ν2−ν1 log qν2 ,

which gives (24). �
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5. Exponential sums

We take γ : R → R a nondecreasing function satisfying limλ→+∞ γ(λ) = +∞,
c ≥ c0 (to be chosen later in (57)) and f : N → U a function satisfying Definition 3
and belonging to the set Fγ,c in Definition 4.

Let N ≥ 1, and let ν be the unique integer such that qν−1 ≤ N < qν . Let ϑ ∈ R

and
S0 =

∑
N/2<n≤N

f(n2) e(ϑn).

Our aim is to prove uniformly for all ϑ ∈ R that

(26) |S0| �f,q ν(ω(q)+2)/4qν−
γ(2�7ν/179�)

56 .

Let ρ ∈ N such that

(27) 3 ≤ ρ ≤ ν
18 ,

and choose

(28) R = qρ.

Applying Lemma 1 with k = 1, we get

|S0|2 � N2

R
+

N

R

∑
1≤r<R

(
1− r

R

)
�(S1(r))

with
S1(r) =

∑
n∈I1(N,r)

f((n+ r)2)f(n2) e(ϑr),

where I1(N, r) = (N/2, N ] ∩ (N/2− r,N − r]. Let

(29) ν2 = ν + 2ρ.

If f satisfies the carry property explained in Definition 3, then by Lemma 7, applied
with (κ, ρ) replaced by (ν + ρ + 2, ρ − 2), the number of n ∈ (N/2, N ] for which

f(n2 + 2rn+ r2)f(n2) �= fν2
(n2 + 2rn+ r2)fν2

(n2) is Of,q(q
ν− ρ

2 ). Hence

(30) S1(r) = S′
1(r) + Of,q(q

ν− ρ
2 ),

where
S′
1(r) =

∑
n∈I1(N,r)

fν2
((n+ r)2)fν2

(n2) e(ϑr).

Using (30) and the Cauchy–Schwarz inequality for the summation over r, this leads
to

|S0|4 �f,q q4ν−ρ +
N4

R2
+

N2

R2
R

∑
1≤r<R

|S′
1(r)|

2
.

Let

(31) ν1 = ν − 2ρ

and

(32) S = R2 = q2ρ.

We have 1 ≤ qν1S � N. Applying Lemma 1 with k = qν1 and S in place of R and
then summing over r, we obtain

|S0|4 �f,q q4ν−ρ +
N4

R2
+

N4

S
+

N3

RS
�(S2)
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with

S2 =
∑

1≤r<R

∑
1≤s<S

(
1− s

S

)
S′
2(r, s)

and

S′
2(r, s) =

∑
n∈I2(N,r,s)

fν2
((n+ r + sqν1)2)fν2

((n+ r)2)fν2
((n+ sqν1)2)fν2

(n2),

where I2(N, r, s) = I1(N, r) ∩ (I1(N, r) − sqν1 ) is an interval included in (N/2, N ].
Observing that fν1

((n+ r+ sqν1)2) = fν1
((n+ r)2) and fν1

((n+ sqν1)2) = fν1
(n2)

so that

fν1
((n+ r + sqν1)2)fν1

((n+ r)2) = fν1
((n+ r + sqν1)2)fν1

((n+ r)2) = 1

and using (23), we can write

S′
2(r, s)

=
∑

n∈I2(N,r,s)

fν1,ν2
((n+ r + sqν1)2)fν1,ν2

((n+ r)2)fν1,ν2
((n+ sqν1)2)fν1,ν2

(n2).

For ν0 ≤ ν1, let us denote by Eν0,ν1,ν2
the set of n ∈ (N/2, N ] such that

fν1,ν2
(n2) �= fν1,ν2

(qν0 rν0,ν2
(n2)).

For 0 ≤ r < R and 0 ≤ s < S, the set Eν0,ν1,ν2
(r, s) of n ∈ I2(N, r, s) such that

fν1,ν2
((n+ r + sqν1)2) �= fν1,ν2

(qν0 rν0,ν2
((n+ r + sqν1)2)).

Observing that n + r + sqν1 ∈ (N/2, N ], using Lemma 8, (27), (29), and (31), we
obtain

card Eν0,ν1,ν2
(r, s) ≤ card Eν0,ν1,ν2

�f,q qν−ν1+ν0 + q
ν
2+5ρν log q.

The set Eν0,ν1,ν2
is a set of exceptions: if ν0 is taken sufficiently small, the function

fν1,ν2
will depend on the digits of index in ν0, . . . , ν2 − 1, except for n ∈ Eν0,ν1,ν2

.
Of course if ν0 = 0, we have Eν0,ν1,ν2

= ∅, but we want to choose ν0 more carefully
so that this set is still small enough. More precisely, let ρ′ ∈ N to be chosen later
such that

(33) 0 ≤ ρ′ ≤ ρ.

Since f is a function satisfying Definition 3, we have by taking

(34) ν0 = ν1 − 2ρ′

and using (27) and (31),

(35) card Eν0,ν1,ν2
(r, s) �f,q qν−2ρ′

.

Remark. A direct argument depending on a better knowledge of f might permit us
to choose a greater value of ν0, leading to a sharper final estimate for such a more
specific function f .

This leads to

(36) |S0|4 �f,q q4ν−ρ + q4ν−2ρ′
+

N4

R2
+

N3

RS
�(S3)

with

(37) S3 =
∑

1≤r<R

∑
1≤s<S

(
1− s

S

)
S′
3(r, s)
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and

S′
3(r, s) =

∑
n∈I2(N,r,s)

g(rν0,ν2

(
(n+ r + sqν1)2

)
)g(rν0,ν2

((n+ r)2))

g(rν0,ν2
((n+ sqν1)2))g(rν0,ν2

(
n2

)
)

with

(38) g(k) = fν1,ν2
(qν0k).

If rν0,ν2
(n2) = u0, since by (27), (29), and (31), we have 2ν1 ≥ ν2, it follows that

rν0,ν2

(
(n+ sqν1)2

)
= rν0,ν2

(qν0u0 + 2snqν1) = rν2−ν0

(
u0 + 2snqν1−ν0

)
.

Similarly, if rν0,ν2
((n+ r)2) = u1, we get

rν0,ν2

(
(n+ r + sqν1)2

)
= rν0,ν2

(qν0u1 + 2snqν1 + 2srqν1)

= rν2−ν0

(
u1 + 2snqν1−ν0 + 2srqν1−ν0

)
.

By (38), g is periodic of period qν2−ν0 . Using (6), we can write

S′
3(r, s) =

∑
n∈I2(N,r,s)

∑
0≤u0<qν2−ν0

0≤u1<qν2−ν0

g(u1 + 2qν1−ν0sn+ 2qν1−ν0rs)g(u0 + 2qν1−ν0sn)g(u1)g(u0)

χqν0−ν2

(
n2

qν2
− u0

qν2−ν0

)
χqν0−ν2

(
(n+ r)2

qν2
− u1

qν2−ν0

)
,

where χqν0−ν2 is defined by (7) with α = qν0−ν2 . Let H be an integer satisfying

(39) qν2−ν0 ≤ H ≤ qν

to be chosen later. Using (11), we have

(40) S′
3(r, s) = S4(r, s) +O(E4(r, 0)) +O(E4(0, r)) +O(E′

4(r))

with the main term S4(r, s) equal to∑
n∈I2(N,r,s)

∑
0≤u0<qν2−ν0

0≤u1<qν2−ν0

g(u1 + 2qν1−ν0sn+ 2qν1−ν0rs)g(u0 + 2qν1−ν0sn)g(u1)g(u0)

Aqν0−ν2 ,H

(
n2

qν2
− u0

qν2−ν0

)
Aqν0−ν2 ,H

(
(n+ r)2

qν2
− u1

qν2−ν0

)
.

For the error terms, since χ = χqν0−ν2 ≥ 0 and B = Bqν0−ν2 ,H ≥ 0, it is possible to
extend the summation over n to the full interval, removing the dependence in s:

E4(r, r
′) =

∑
N/2<n≤N

∑
0≤u0<qν2−ν0

0≤u1<qν2−ν0

B

(
(n+ r)2

qν2
− u0

qν2−ν0

)
χ

(
(n+ r′)2

qν2
− u1

qν2−ν0

)
,

E′
4(r) =

∑
N/2<n≤N

∑
0≤u0<qν2−ν0

0≤u1<qν2−ν0

B

(
n2

qν2
− u0

qν2−ν0

)
B

(
(n+ r)2

qν2
− u1

qν2−ν0

)
.
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5.1. Estimate of E4(r, r
′).

Since for any t ∈ R we have
∑

0≤u1<qν2−ν0 χqν0−ν2

(
t− u1

qν2−ν0

)
= 1, this gives

E4(r, r
′) =

∑
N/2<n≤N

∑
0≤u0<qν2−ν0

Bqν0−ν2 ,H

(
(n+ r)2

qν2
− u0

qν2−ν0

)
,

which by (9) gives

E4(r, r
′) =

∑
|h0|≤H

bh0
(qν0−ν2 , H)

∑
N/2<n≤N

∑
0≤u0<qν2−ν0

e

(
h0(n+ r)2

qν2
− h0u0

qν2−ν0

)
.

By (10) we have |bh0
(qν0−ν2 , H)| ≤ H−1, and we observe that

1

qν2−ν0

∑
0≤u0<qν2−ν0

e

(
− h0u0

qν2−ν0

)
=

{
1 if h0 ≡ 0 mod qν2−ν0 ,
0 if h0 �≡ 0 mod qν2−ν0 ,

so that, writing h0 = h′
0q

ν2−ν0 , we get

(41) |E4(r, r
′)| � E5(r)

with

E5(r) =
qν2−ν0

H

∑
|h′

0|≤H/qν2−ν0

∣∣∣∣∣∣
∑

N/2<n≤N

e

(
h′
0(n+ r)2

qν0

)∣∣∣∣∣∣ .
It remains to estimate E5(r). By (27) and (39) for |h′

0| ≤ H/qν2−ν0 , we have
h′
0 ≡ 0 mod qν0 if and only if h′

0 = 0. Using (18), we have uniformly for r ∈ Z,

E5(r) �
qν+ν2−ν0

H
+

qν2−ν0

H

∑
0<|h′|≤H/qν2−ν0

(
qν−ν0 + log qν0

)√
gcd(h′, qν0)qν0 ,

and by (25) ∑
0<|h′|≤H/qν2−ν0

√
gcd(h′, qν0) �q H/qν2−ν0 ,

which, for all integers H with qν2−ν0 ≤ H ≤ qν , leads to

E5(r) �q
qν+ν2−ν0

H
+ qν0/2

(
qν−ν0 + log qν0

)
.

Choosing

(42) H = qν2−ν0+2ρ,

by (34), (31), (29), and (27) we get

(43) |E5(r)| �q qν−2ρ.
5.2. Estimate of E′

4(r). We have

E′
4(r) =

∑
|h0|≤H

∑
|h1|≤H

bh0
(qν0−ν2 , H) bh1

(qν0−ν2 , H)

∑
N/2<n≤N

∑
0≤u0<qν2−ν0

0≤u1<qν2−ν0

e

(
h0

n2

qν2
− h0

u0

qν2−ν0

)
e

(
h1

(n+ r)2

qν2
− h1

u1

qν2−ν0

)
.
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We observe that for h0 �≡ 0 mod qν2−ν0 we have
∑

0≤u0<qν2−ν0 e
(
−h0

u0

qν2−ν0

)
= 0

and similarly for h1. Hence we may assume h0 ≡ h1 ≡ 0 mod qν2−ν0 . Writing
h0 = h′

0q
ν2−ν0 and h1 = h′

1q
ν2−ν0 and using |bh(H)| ≤ 1

H (by (10)), we get

|E′
4(r)| �

q2(ν2−ν0)

H2

∑
|h′

0|≤H/qν2−ν0

|h′
1|≤H/qν2−ν0

∣∣∣∣∣∣
∑

N/2<n≤N

e

(
(h′

0 + h′
1)n

2 + 2h′
1rn

qν0

)∣∣∣∣∣∣ .
The contribution to E′

4(r) of the terms for which h′
0 + h′

1 = 0 is majorized by

H−2 q2(ν2−ν0)
∑

|h′
1|≤H/qν2−ν0

min

(
N,

∣∣∣sin π 2h′
1r

qν0

∣∣∣−1
)
.

Since 1 ≤ r < qρ, by (42), (34), (31), (27), so that (33), we have

r(1 + 2Hqν0−ν2) ≤ qρ(1 + 2q2ρ) < qν0 ,

and the values of 2h′
1r are all distinct modulo qν0 in the summation over h′

1 above.
Therefore ∑

|h′
1|≤H/qν2−ν0

min

(
N,

∣∣∣sin π 2h′
1r

qν0

∣∣∣−1
)

≤
∑

� mod qν0

min

(
N,

∣∣∣sinπ �
qν0

∣∣∣−1
)
,

and we conclude by (14) that the contribution to E′
4(r) of the terms for which

h′
0 + h′

1 = 0 is majorized by

H−2 q2(ν2−ν0)(N + qν0 log qν0) �q ν0 H−2qν+2(ν2−ν0).

Using (18), the contribution to E′
4(r) of the terms for which h′

0 + h′
1 �= 0 is

� H−2 q2(ν2−ν0)
∑

h′
0+h′

1 
=0

(
qν−ν0 + log qν0

)√
gcd(h′

0 + h′
1, q

ν0)qν0 ,

which is, writing h′ = h′
0 + h′

1,

� qν0/2
(
qν−ν0 + log qν0

)
H−1qν2−ν0

∑
0<|h′|≤2H/qν2−ν0

√
gcd(h′, qν0).

By (25), for all integers H with qν2−ν0 ≤ H ≤ qν0 , this is

�q qν0/2
(
qν−ν0 + log qν0

)
,

so that we obtain the estimate

|E′
4(r)| �q ν0 H−2qν+2(ν2−ν0) + qν−

ν0
2 + ν0 q

ν0/2.

Using (42), (34), (31), (29), and (27), we get

(44) |E′
4(r)| �q ν qν−2ρ.

By (40), (41), (43), and (44), we obtain

(45) S′
3(r, s) = S4(r, s) +Oq(ν q

ν−2ρ).
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5.3. Estimate of S4(r, s). We have

S4(r, s) =
∑

|h0|≤H

∑
|h1|≤H

ah0
(qν0−ν2 , H) ah1

(qν0−ν2 , H)
∑

n∈I2(N,r,s)

∑
0≤u0<qν2−ν0

0≤u1<qν2−ν0

g(u1 + 2qν1−ν0sn+ 2qν1−ν0rs)g(u0 + 2qν1−ν0sn)g(u1)g(u0)

e

(
h0

n2

qν2
− h0

u0

qν2−ν0

)
e

(
h1

(n+ r)2

qν2
− h1

u1

qν2−ν0

)
.

We write u0 + 2snqν1−ν0 ≡ u2 mod qν2−ν0 and u1 + 2snqν1−ν0 + 2rsqν1−ν0 ≡
u3 mod qν2−ν0 . This gives

S4(r, s) =
∑

|h0|≤H

∑
|h1|≤H

ah0
(qν0−ν2 , H) ah1

(qν0−ν2 , H)
1

q2(ν2−ν0)

∑
0≤h2<qν2−ν0

0≤h3<qν2−ν0∑
0≤u0<qν2−ν0

0≤u1<qν2−ν0

e

(
−h0u0

qν2−ν0

)
e

(
−h1u1

qν2−ν0

)
g(u1)g(u0)

∑
0≤u2<qν2−ν0

0≤u3<qν2−ν0

g(u3)g(u2)

∑
n∈I2(N,r,s)

e

(
h0n

2 + h1(n+ r)2

qν2

)
e

(
h2

u0 + 2snqν1−ν0 − u2

qν2−ν0

)

e

(
h3

u1 + 2snqν1−ν0 + 2rsqν1−ν0 − u3

qν2−ν0

)
,

and we obtain

S4(r, s) = q2(ν2−ν0)
∑

|h0|≤H

∑
|h1|≤H

ah0
(qν0−ν2 , H)ah1

(qν0−ν2 , H)

∑
0≤h2<qν2−ν0

∑
0≤h3<qν2−ν0

e

(
2h3rs

qν2−ν1

)
ĝ(h0 − h2) ĝ(h3 − h1) ĝ(−h2) ĝ(h3)

∑
n∈I2(N,r,s)

e

(
h0n

2 + h1(n+ r)2 + 2sqν1(h2 + h3)n

qν2

)
,

where

(46) ĝ(h) =
1

qν2−ν0

∑
0≤u<qν2−ν0

g(u) e

(
− uh

qν2−ν0

)

is the discrete Fourier transform related to g defined by (19).
We write

(47) S4(r, s) = S′
4(r, s) + S′′

4 (r, s),

where S′
4(r, s) denotes the contribution to S4(r, s) of the terms for which h0+h1 = 0,

and S′′
4 (r, s) denotes the contribution to S4(r, s) of the terms for which h0+h1 �= 0.
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5.3.1. Contribution of S′
4(r, s). We have

S′
4(r, s) ≤ q2(ν2−ν0)

∑
|h1|≤H

∣∣ah1
(qν0−ν2 , H)

∣∣2
∑

0≤h2<qν2−ν0

∑
0≤h3<qν2−ν0

|ĝ(−h1 − h2) ĝ(h3 − h1) ĝ(−h2) ĝ(h3)|∣∣∣∣∣∣
∑

n∈I2(N,r,s)

e

(
2h1r + 2(h2 + h3)sq

ν1

qν2
n

)∣∣∣∣∣∣ .
When h2 runs over a complete set of residues modulo qν2−ν0 , so does h = h2 + h3.
Thus, by periodicity modulo qν2−ν0 , we have

(48) |S′
4(r, s)| ≤ S5(r, s)

with

S5(r, s) = q2(ν2−ν0)
∑

|h1|≤H

∣∣ah1
(qν0−ν2 , H)

∣∣2
∑

0≤h<qν2−ν0

min

(
qν ,

∣∣∣∣sin π 2h1r + 2hsqν1

qν2

∣∣∣∣−1
)
S6(h, h1)

and

S6(h, h1) =
∑

0≤h3<qν2−ν0

|ĝ(h3 − h1 − h) ĝ(h3 − h1) ĝ(h3 − h) ĝ(h3)| .

We can majorize S6(h, h1) independently of h using the Cauchy–Schwarz inequality,⎛⎝ ∑
0≤h3<qν2−ν0

|ĝ(h3 − h1 − h) ĝ(h3 − h)|2
⎞⎠1/2 ⎛⎝ ∑

0≤h3<qν2−ν0

|ĝ(h3 − h1) ĝ(h3)|2
⎞⎠1/2

.

The two quantities in the parentheses above are equal by periodicity, hence

(49) S6(h, h1) ≤ S7(h1) =
∑

0≤h′<qν2−ν0

|ĝ(h′ − h1) ĝ(h
′)|2 .

This gives

S5(r, s) �q2(ν2−ν0)
∑

|h1|≤H

∣∣ah1
(qν0−ν2 , H)

∣∣2 S7(h1)

∑
0≤h<qν2−ν0

min

(
qν ,

∣∣∣∣sinπ 2h1r + 2hsqν1

qν2

∣∣∣∣−1
)
.

Intending to sum over s, we observe that the sum above contains terms 2s, so that
it is convenient to extend this sum by adding the terms 2s + 1. Noting by (27),
(31), (28), and (42) that |2h1rq

−ν1 | ≤ 2HRq−ν1 ≤ 1
2 , we can write

1

S

∑
1≤s<S

∑
0≤h<qν2−ν0

min

(
qν ,

∣∣∣∣sin π 2h1r + (2s)hqν1

qν2

∣∣∣∣−1
)

≤ 2

2S

∑
1≤s′≤2S

∑
0≤h<qν2−ν0

min

(
qν ,

∣∣∣∣sin πhs′ + 2h1rq
−ν1

qν2−ν1

∣∣∣∣−1
)
,
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and observing that the sum over h is qν2−ν1-periodic, using (16) this is

� qν1−ν0τ
(
qν2−ν1

)
min

(
qν ,

∣∣∣∣sinπ 2h1r

qν2

∣∣∣∣−1
)

+ qν1−ν0qν2−ν1 log qν2−ν1 .

Observing by (31), (27), and (42) that |h1r| ≤ HR ≤ qν1 ≤ qν2/4, we have

qν2−ν1 ≤ min

(
qν ,

qν2

HR

)
� min

(
qν ,

∣∣∣∣sinπ 2h1r

qν2

∣∣∣∣−1
)

≤ min

(
qν ,

qν2

r |h1|

)
.

Hence

(50)
1

S

∑
1≤s<S

S5(r, s) � qν1−ν0
(
τ
(
qν2−ν1

)
+ log qν2−ν1

)
S8(r)

with

S8(r) = q2(ν2−ν0)
∑

|h1|≤H

∣∣ah1
(qν0−ν2 , H)

∣∣2 S7(h1)min

(
qν ,

qν2

r |h1|

)
.

Taking (42) into account, we split the summation S8(r) in three parts

S8(r) = S′
8(r) + S′′

8 (r) + S′′′
8 (r)

depending on the size of |h1|: |h1| ≤ q2ρ, q2ρ < |h1| ≤ qν2−ν0 and qν2−ν0 < |h1| ≤ H.
Using (10) in S′

8(r), we have |ah1
(qν0−ν2 , H)| ≤ α = q−(ν2−ν0), thus

S′
8(r) = q2(ν2−ν0)

∑
|h1|≤q2ρ

∣∣ah1
(qν0−ν2 , H)

∣∣2 S7(h1)min

(
qν ,

qν2

r |h1|

)
≤ qν

∑
|h1|≤q2ρ

S7(h1).

Lemma 9. If c > 0 is the constant introduced in Definition 4 and

(51) ν ≤
(
2 + 4

3c
)
ρ,

then, uniformly for λ ∈ N with 1
3 (ν2 − ν0) ≤ λ ≤ 4

5 (ν2 − ν0), we have

(52)
∑

0≤h<qν2−ν0

∑
0≤k<qν2−ν0−λ

|ĝ(h+ k) ĝ(h)|2 �f,q q
1
2 (ν1−ν0)− 1

2γ(λ)(log qν2−ν1)2.

Proof. See [31, Lemma 10]. �

By (49) we have∑
|h1|≤q2ρ

S7(h1) =
∑

0≤h′<qν2−ν0

∑
|h1|≤q2ρ

|ĝ(h′ − h1) ĝ(h
′)|2 .

Applying Lemma 9 with λ = ν2 − ν0 − 2ρ (which by (34), (31), (29), (27), and (33)
satisfies 1

3 (ν2 − ν0) ≤ λ ≤ 4
5 (ν2 − ν0), as required in Lemma 9), we get∑

|h1|≤q2ρ

S7(h1) �f,q q
1
2 (ν1−ν0)− 1

2γ(ν2−ν0−2ρ)(log qν2−ν1)2,

and we obtain

S′
8(r) �f,q qν+

1
2 (ν1−ν0)− 1

2γ(ν2−ν0−2ρ)(log qν2−ν1)2.
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Using (10) in S′′
8 (r), we have |ah1

(qν0−ν2 , H)| ≤ α = q−(ν2−ν0), thus

S′′
8 (r) = q2(ν2−ν0)

∑
q2ρ<|h1|≤qν2−ν0

∣∣ah1
(qν0−ν2 , H)

∣∣2 S7(h1)min

(
qν ,

qν2

r |h1|

)

≤ qν2

r

∑
q2ρ<|h1|≤qν2−ν0

S7(h1)

|h1|
≤ qν2−2ρ

r

∑
|h1|≤qν2−ν0

S7(h1),

and by (20) and (29) we obtain S′′
8 (r) � qν2−2ρ

r = qν

r hence using (28),

1

R

∑
1≤r<R

S′′
8 (r) � qν

logR

R
= ρ qν−ρ log q.

Using (10) in S′′′
8 (r), we have |ah1

(qν0−ν2 , H)| ≤ 1
π|h1| , thus

S′′′
8 (r) = q2(ν2−ν0)

∑
qν2−ν0<|h1|≤H

∣∣ah1
(qν0−ν2 , H)

∣∣2 S7(h1)min

(
qν ,

qν2

r |h1|

)

� q2(ν2−ν0)
qν2

r

∑
qν2−ν0<|h1|≤H

S7(h1)

|h1|3
.

Observing that S7(h1) is qν2−ν0 periodic, we split the summation into jqν2−ν0 <

|h1| ≤ (j+1)qν2−ν0 , where 1 ≤ j < H/qν2−ν0 , and majorize |h1|−3 by j−3q−3(ν2−ν0),

S′′′
8 (r) � q2(ν2−ν0)

qν2

r

∑
1≤j<H/qν2−ν0

1

j3q3(ν2−ν0)

∑
0≤h1<qν2−ν0

S7(h1),

thus by (20), (34), and (31),

S′′′
8 (r) � q−(ν2−ν0)

qν2

r
=

qν0

r
≤ qν−2ρ

r
.

It follows from the estimates above that
1

R

∑
1≤r<R

S8(r) �f,q qν+
1
2 (ν1−ν0)− 1

2γ(ν2−ν0−2ρ)(log qν2−ν1)2 + ρ qν−ρ log q,

hence by (50) and (48)

1

RS

∑
1≤r<R

∑
1≤s<S

|S′
4(r, s)|(53)

�f,q qν1−ν0
(
τ
(
qν2−ν1

)
+ log qν2−ν1

)(
qν+

1
2 (ν1−ν0)− 1

2γ(ν2−ν0−2ρ)(log qν2−ν1)2 + ρ qν−ρ log q
)
.

5.3.2. Contribution of S′′
4 (r, s). We have h0 + h1 �= 0, hence the summation over n

is an incomplete quadratic Gauss sum. Using (18), we get

|S′′
4 (r, s)| �q2(ν2−ν0)

∑
|h0|≤H

∑
|h1|≤H
h1 
=−h0

∣∣ah0
(qν0−ν2 , H) ah1

(qν0−ν2 , H)
∣∣

log(qν2)
√
gcd(h0 + h1, qν2)qν2∑

0≤h2<qν2−ν0

|ĝ(h0 − h2) ĝ(−h2)|
∑

0≤h3<qν2−ν0

|ĝ(h3 − h1) ĝ(h3)| .
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By the Cauchy-Schwarz inequality and (20), we have∑
0≤h2<qν2−ν0

|ĝ(h0 − h2) ĝ(−h2) | ≤ 1 and
∑

0≤h3<qν2−ν0

|ĝ(h3 − h1) ĝ(h3)| ≤ 1,

so that

|S′′
4 (r, s)| � log(qν2) q

ν2
2 +2(ν2−ν0)∑

|h0|≤H

∑
|h1|≤H
h1 
=−h0

∣∣ah0
(qν0−ν2 , H)ah1

(qν0−ν2 , H)
∣∣√gcd(h0 + h1, qν2).

Observing that |h0 + h1| ≤ 2H, we get

|S′′
4 (r, s)| � log(qν2)q

ν2
2 +2(ν2−ν0)H1/2

∑
|h0|≤H

∑
|h1|≤H

∣∣ah0
(qν0−ν2 , H)ah1

(qν0−ν2 , H)
∣∣ .

Furthermore∑
|h|≤H

∣∣ah(qν0−ν2 , H)
∣∣ ≤ ∑

|h|≤qν2−ν0

1

qν2−ν0
+

∑
qν2−ν0<|h|≤H

1

π |h|

� log(H/qν2−ν0) � ρ log q.

We deduce that

(54) |S′′
4 (r, s)| � ν2ρ

2(log q)3q
ν2
2 +2(ν2−ν0)H1/2 � (log q)3ν3q

ν2
2 +2(ν2−ν0)H1/2.

5.3.3. Conclusion. From (53) and (54) we conclude that

1

RS

∑
1≤r<R

∑
1≤s<S

S4(r, s)

�f,q qν1−ν0
(
τ
(
qν2−ν1

)
+ log qν2−ν1

)(
qν+

1
2 (ν1−ν0)− 1

2γ(ν2−ν0−2ρ)(log qν2−ν1)2 + ρ qν−ρ log q
)

+ (log q)3ν3q
ν2
2 +2(ν2−ν0)H1/2,

hence, by (45), (37), (36), (29), (31), (34), (27), and (42) we obtain

|S0|4 �f,q q4ν−ρ + q4ν−2ρ′

+
(
τ
(
q4ρ

)
+ log q4ρ

) (
q4ν+3ρ′− 1

2γ(2ρ+2ρ′)(log q4ρ)2 + ρ q4ν+2ρ′−ρ log q
)

+ (log q)3ν3q
7ν
2 +ρ+2(4ρ+2ρ′)+3ρ+ρ′

,

which, using τ
(
q4ρ

)
� (4ρ)ω(q)τ (q) (by multiplicativity), the fact that γ is nonde-

creasing and choosing

(55) ρ′ = �γ(2ρ)/7� ,

by (21) we have ρ′ ≤ ρ/7, and we get

|S0|4 �f,q ρω(q)+2q4ν−
γ(2ρ)
14 + ν3q

7ν
2 +12ρ+5 ρ

7 .

Choosing

(56) ρ = �7ν/179� ,
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in order to ensure (51), it is sufficient to check that

ν ≤
(
2 + 4

3c
)( 7ν

179
− 1

)
,

which is true for ν large enough and

(57) c ≥ c0 = 18.

This gives

|S0|4 �f,q νω(q)+2
(
q4ν−

γ(2�7ν/179�)
14 + q4ν−

ν
358

)
,

and using again (21) this establish (26).

6. Proof of Theorem 1

We apply (26) with N replaced by
⌊
x/qk

⌋
, and we sum over k. Let K ∈ N such

that qK ≤ x163/700 < qK+1. Since γ is nondecreasing, we have∑
k≤K

x

qk
q−γ(2�(7 log(xq−k))/(179 log q)�)/56 ≤ q−γ(2�(3 log x)/(100 log q)�)/56

∑
k≤K

x

qk

≤ x q−γ(2�(3 log x)/(100 log q)�)/56,

while ∑
k>K

x

qk
q−γ(2�7 log(xq−k)/179 log q�)/56 ≤

∑
k>K

x537/700

qk
� x537/700

� x q−γ(2�3 log x/100 log q�)/56,

which establish (4) and complete the proof of Theorem 1.

7. Application to Rudin–Shapiro sequences

7.1. Rudin–Shapiro sequences of order δ. We proved in [31, Section 10.1] that
any Rudin–Shapiro sequence of order δ verifies Definition 3 and belongs to Fγ,c in
Definition 4 for any c > 0 and

(58) γ(λ) = − λ

2 log 2
log

(
1 + |cosπα|

2

)
− δ + 1

2
.

Applying Theorem 1, we obtain

Theorem 2. For any δ ∈ N, α ∈ R, ϑ ∈ R, and x ≥ 2, we have

(59)

∣∣∣∣∣∣
∑
n≤x

rδ(n
2, α) e (ϑn)

∣∣∣∣∣∣ � x (log x)3 2−
γ(2�(7 log x)/(179 log 2)�)

14 ,

where γ is defined by (58).

If (βδ(n))n∈N is the sequence defined for any n ∈ N by

βδ(n) =
∑

k≥δ+1

εk−δ−1(n) εk(n),

then the following corollaries can be easily deduced from Theorem 2.

Corollary 1. The sequence (αβδ(n
2))n∈N is uniformly distributed modulo 1 if and

only if α ∈ R \Q.
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Proof. If α ∈ Q, then the sequence (αβδ(n
2))n∈N takes only a finite number of

different values, thus it is not uniformly distributed modulo 1. If α ∈ R \ Q, then
for all h ∈ Z such that h �= 0, it follows from Theorem 2 that there exists σ2(hα) > 0
such that ∑

n≤x

e(hαβδ(n
2)) =

∑
n≤x

rδ(n
2, hα) = O(x1−σ2(hα)).

By the Weyl criterion [34, chapter 1, p. 1] this shows the uniform distribution
modulo 1 of the sequence (αβδ(n

2))n∈N. �

Corollary 2. For any m ∈ N, m ≥ 2, there exists σm > 0 such that for any a ∈ Z,
we have

(60) card{n ≤ x, βδ(n
2) ≡ a mod m} =

x

m
+Om(x1−σm).

Proof. We have

card{n ≤ x, βδ(n
2) ≡ a mod m} =

∑
n≤x

1

m

∑
0≤j<m

e

(
j

m
(βδ(n

2)− a)

)

=
x

m
+

1

m

∑
1≤j<m

e

(
−ja

m

)∑
n≤x

e

(
j

m
βδ(n

2)

)
.

By Theorem 2, for any j ∈ {1, . . . ,m− 1}, there exists σ(j,m) > 0 such that∑
n≤x

e

(
j

m
βδ(n

2)

)
= O(x1−σ(j,m)).

Taking σm = min1≤j<m σ(j,m) > 0, we obtain (60). �

By similar arguments we can prove

Corollary 3. For any (m, a) ∈ N×Z, m ≥ 2, the sequence (ϑn)n∈N, βδ(n2)≡a mod m

is uniformly distributed modulo 1 if and only if ϑ ∈ R \Q.

7.2. Rudin–Shapiro sequences of degree d. We proved in [31, Section 10.2]
that any Rudin–Shapiro sequence of degree d verifies Definition 3 and belongs to
Fγ,c in Definition 4 for any c > 0 and

(61) γ(λ) =
−λ

d log 2
log

(
1− 23−d

(
sin π‖α‖

4

)2
)
− 1

2
.

Applying Theorem 1, we obtain

Theorem 3. For any d ∈ N with d ≥ 2, α ∈ R, ϑ ∈ R, and x ≥ 2, we have

(62)

∣∣∣∣∣∣
∑
n≤x

Rd(n
2, α) e (ϑn)

∣∣∣∣∣∣ � x (log x)3 2−
γ(2�(7 log x)/(179 log 2)�)

14 ,

where γ is defined by (61).

If (bd(n))n∈N is the sequence defined for any n ∈ N by

bd(n) =
∑

k≥d−1

εk−d+1(n) · · · εk(n),

by arguments similar to section 7.1 the following corollaries can be deduced from
Theorem 3.
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Corollary 4. The sequence (αbd(n
2))n∈N is uniformly distributed modulo 1 if and

only if α ∈ R \Q.

Corollary 5. For any m ∈ N, m ≥ 2, there exists σm > 0 such that for any a ∈ Z,
we have

card{n ≤ x, bd(n
2) ≡ a mod m} =

x

m
+ Om(x1−σm).

Corollary 6. For any (m, a) ∈ N×Z, m ≥ 2, the sequence (ϑn)n∈N, bd(n2)≡a mod m

is uniformly distributed modulo 1 if and only if ϑ ∈ R \Q.

References

[1] J.-P. Allouche and P. Liardet, Generalized Rudin-Shapiro sequences, Acta Arith. 60 (1991),
no. 1, 1–27. MR1129977

[2] J.-P. Allouche and M. Mendès France, On an extremal property of the Rudin-Shapiro se-
quence, Mathematika 32 (1985), no. 1, 33–38, DOI 10.1112/S0025579300010822. MR817104

[3] J.-P. Allouche and M. Mendès France, Suite de Rudin-Shapiro et modèle d’Ising (French,
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[27] M. Lemańczyk, Toeplitz Z2-extensions (English, with French summary), Ann. Inst. H.
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