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VARIETIES WITH P-UNITS

ANDREAS KRUG

Abstract. We study the class of compact Kähler manifolds with trivial canon-
ical bundle and the property that the cohomology of the trivial line bundle
is generated by one element. If the square of the generator is zero, we get
the class of strict Calabi–Yau manifolds. If the generator is of degree 2, we
get the class of compact hyperkähler manifolds. We provide some examples
and structure results for the cases where the generator is of higher nilpotency
index and degree. In particular, we show that varieties of this type are closely
related to higher-dimensional Enriques varieties.

1. Introduction

In this paper we will study a certain class of compact Kähler manifolds with
trivial canonical bundle which contains all strict Calabi–Yau varieties as well as all
hyperkähler manifolds. For the bigger class of manifolds with trivial first Chern
class c1(X) = 0 ∈ H2(X,R) there exists the following nice structure theorem,
known as the Beauville–Bogomolov decomposition; see [Bea83]. Namely, each such
manifold X admits an étale covering X ′ → X which decomposes as

X ′ = T ×
∏
i

Yi ×
∏
j

Zj ,

where T is a complex torus, the Yi are hyperkähler, and the Zj are simply connected
strict Calabi–Yau varieties of dimension at least 3.

Given a variety X, the graded algebra H∗(OX) :=
⊕dimX

i=0 Hi(X,OX)[−i] is
considered an important invariant; see, in particular, Abuaf [Abu15] who calls
H∗(OX) the homological unit of X and conjectures that it is stable under derived
equivalences. In this paper, we want to study varieties which have trivial canonical
bundle and the property that the algebra H∗(OX) is generated by one element.

The main motivations are the following two observations. Let X be a compact
Kähler manifold.

Observation 1.1. X is a strict Calabi–Yau manifold if and only if the canonical
bundle ωX is trivial and H∗(OX) ∼= C[x]/x2 with deg x = dimX. These conditions
can be summarized in terms of objects of the bounded derived category D(X) :=

Db(Coh(X)) of coherent sheaves. Namely, X is a strict Calabi–Yau manifold if and
only if OX ∈ D(X) is a spherical object in the sense of Seidel and Thomas [ST01].

The above is a very simple reformulation of the standard definition of a strict
Calabi–Yau manifold as a compact Kähler manifold with trivial canonical bundle
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such that Hi(OX) = 0 for i �= 0, dimX. The second observation is probably less
well known.

Observation 1.2. X is a hyperkähler manifold of dimension dimX = 2n if and only
if ωX is trivial and H∗(OX) ∼= C[x]/xn+1 with deg x = 2. This is equivalent to the
condition that OX ∈ D(X) is a Pn-object in the sense of Huybrechts and Thomas
[HT06].

Indeed, the structure sheaf of a hyperkähler manifold is one of the well-known
examples of a Pn-object; see [HT06, Ex. 1.3(ii)]. The fact that H∗(OX) also char-
acterizes the compact hyperkähler manifolds follows from [HNW11, Prop. A.1].

Inspired by this, we study the class of compact Kähler manifolds X with the
property that OX ∈ D(X) is what we call a Pn[k]-object ; see Definition 2.4. Con-
cretely, this means:

(C1) the canonical bundle ωX is trivial;
(C2) there is an isomorphism of C-algebras H∗(OX) ∼= C[x]/xn+1 with deg x =

k.

By Serre duality, such a manifold is of dimension dimX = deg(xn) = n · k. For
n = 1, we get exactly the strict Calabi–Yau manifolds, while for k = 2, we get the
hyperkähler manifolds.

In this paper we will study the case of higher n and k. We construct examples
and prove some structure results. If OX is a Pn[k]-object with k > 2, the manifold
X is automatically projective; see Lemma 3.10. Hence, we will call X a variety
with Pn[k]-unit. The main results of this paper can be summarized as follows.

Theorem 1.3. Let n+1 = pν be a prime power. Then the following are equivalent:

(i) there exists a variety with Pn[4]-unit;
(ii) there exists a variety with Pn[k]-unit for every even k;
(iii) there exists a strict Enriques variety of index n+ 1.

For n+ 1 arbitrary, the implications (iii)=⇒(ii)=⇒(i) are still true.

We do not know whether or not (i)=⇒(iii) is true in general if n+1 is not a prime
power, but we will prove a slightly weaker statement that holds for arbitrary n+1;
see Section 5.2. In particular, the universal cover of a variety with Pn[4]-unit, with
n+ 1 arbitrary, splits into a product of two hyperkähler varieties; see Proposition
5.3.

Our notion of strict Enriques varieties is inspired by similar notions of higher-
dimensional analogues of Enriques surfaces due to Boissière, Nieper-Wißkirchen,
and Sarti [BNWS11] and Oguiso and Schröer [OS11]. There are known examples
of strict Enriques varieties of index 3 and 4. Hence, we get

Corollary 1.4. For n = 2 and n = 3 there are examples of varieties with Pn[k]-
units for every even k ∈ N.

The motivation for this work comes from questions concerning derived categories
and the notions are influenced by this. However, in this paper, with the exception
sections 6.5 and 6.6, all results and proofs are also formulated without using the
language of derived categories.

The paper is organized as follows. In section 2.1, we fix some notations and
conventions. Sections 2.2 and 2.3 are a very brief introduction into derived cate-
gories and some types of objects that occur in these categories. In particular, we
introduce the notion of Pn[k]-objects.
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In section 3.1 we say a few words about compact hyperkähler manifolds. In
section 3.2 we discuss automorphisms of Beauville–Bogomolov products and their
action on cohomology. This is used in the following section 3.3 in order to give
a proof of Observation 1.2. This proof is probably a bit easier than the one in
[HNW11, App. A]. More importantly, it allows us to introduce some of the notations
and ideas which are used in the later sections. In section 3.4, we discuss a class
of varieties which we call strict Enriques varieties. There are two different notions
of Enriques varieties in the literature (see [BNWS11] and [OS11]), and our notion
is the intersection of these two; see Proposition 3.14(iv). In section 3.5 we quickly
mention a generalization; namely strict Enriques stacks.

We give the definition of a variety with a Pn[k]-unit together with some basic
remarks in section 4.1. Section 4.2 provides two examples of varieties which look
like promising candidates, but ultimately fail to have Pn[k]-units. In section 4.3 we
construct series of varieties with Pn[k]-units out of strict Enriques varieties of index
n+ 1. In particular, we prove the implication (iii)=⇒(ii) of Theorem 1.3.

In section 5.1 we make some basic observations concerning the fundamental group
and the universal cover of varieties with Pn[k]-units. In section 5.2 we specialize to
the case k = 4. We proof that the universal cover of a variety with Pn[4]-unit is the
product of two hyperkähler manifolds of dimension 2n. Then we proceed to proof
the implication (i)=⇒(iii) of Theorem 1.3 for n+ 1 a prime power.

Section 6 is a collection of some further observations and ideas. In sections
6.1, 6.2, and 6.3 some further constructions leading to varieties with Pn[k]-units
are discussed. We talk briefly about stacks with Pn[k]-units in section 6.4. In
section 6.5 we prove that the class of strict Enriques varieties is stable under derived
equivalences, and in section 6.6 we study some derived auto-equivalences of varieties
with Pn[k]-units. In the final section 6.7, we contemplate a bit about varieties with
Pn[k]-units as moduli spaces and constructions of hyperkähler varieties.

2. Notations and preliminaries

2.1. Notations and conventions.

(i) Throughout, X will be a connected compact Kähler manifold (often a
smooth projective variety).

(ii) We denote the universal cover by X̂ → X.

(iii) If ωX is of finite order m, we denote the canonical cover by π : X̃ → X.
It is defined by the properties that ω

˜X is trivial and π is an étale Galois

cover of degree m. We have π∗O ˜X
∼= OX ⊕ ω−1

X ⊕ ω−2
X ⊕ · · · ⊕ ω

−(m−1)
X ,

and the covering map X̃ → X is the quotient by a cyclic group G = 〈g〉
with g ∈ Aut(X̃) of order m.

(iv) We will usually write graded vector spaces in the form V ∗ =
⊕

i∈Z
V i[−i].

The Euler characteristic is given by the alternating sum χ(V ∗) =∑
i∈Z

(−1)i dimV i.
(v) Given a sheaf or a complex of sheaves E and an integer i ∈ Z, we write

Hi(X,E) for the ith derived functor of global sections. In contrast Hi(E)
denotes the cohomology of the complex in the sense kernel modulo image
of the differentials.

(vi) We write for short Y ∈ HK2d to express the fact that Y is a compact
hyperkähler manifold of dimension 2d. In this case, we denote by y a
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generator of H2(OY ), i.e., y is the complex conjugate of a symplectic form
on Y . If we just write Y ∈ HK, this means that Y is a hyperkähler
manifold of unspecified dimension. Sometimes, we write Y ∈ K3 instead
of Y ∈ HK2.

(vii) We write for short Z ∈ CYe to express the fact that Z is a compact simply
connected strict Calabi–Yau variety of dimension e ≥ 3. In this case, we
denote by z a generator of He(OZ), i.e., z is the complex conjugate of a
volume form on Z. If we just write Z ∈ CY, this means that Z is a simply
connected strict Calabi–Yau variety of unspecified dimension.

(viii) We denote the connected zero-dimensional manifold by pt.
(ix) For n ∈ N, we denote the symmetric group of permutations of the set

{1, . . . , n} by Sn. Given a space X and a permutation σ ∈ Sn, we de-
note the automorphism of the cartesian product Xn which is given by the
according permutation of components again by σ ∈ Aut(Xn).

(x) The symbol
∑

i1 �=i2 �=···�=i�
means summation over sets {i1, . . . , i�} of cardi-

nality � (contained in some fixed index set which is, hopefully, clear from
the context).

2.2. Derived categories of coherent sheaves. As mentioned in the introduc-
tion, knowledge of derived categories is not necessary for the understanding of this
paper. However, often things can be stated in the language of derived categories
in the most convenient way, and questions concerning derived categories motivated
this work. Hence, we will give, in a very brief form, some basic definitions and
facts.

The derived category D(X) := Db(Coh(X)) is defined as the localization of the
homotopy category of bounded complexes of coherent sheaves by the class of quasi-
isomorphisms. Hence, the objects of D(X) are bounded complexes of coherent
sheaves. The morphisms are morphisms of complexes together with formal inverses
of quasi-isomorphisms. In particular, every quasi-isomorphism between complexes
becomes an isomorphism in D(X). The derived category D(X) is a triangulated
category. In particular, there is the shift auto-equivalence [1] : D(X) → D(X).
Given two objects E,F ∈ D(X), there is a graded Hom-space Hom∗(E,F ) =⊕

i HomD(X)(E,F [i])[−i]. For E = F , this is a graded algebra by the Yoneda prod-
uct (composition of morphisms). There is a fully faithful embedding Coh(X) ↪→
D(X), A �→ A[0] which is given by considering sheaves as complexes concentrated
in degree zero. Most of the time, we will denote A[0] simply by A again. For
A,B ∈ Coh(X), we have Hom∗(A,B) ∼= Ext∗(A,B). Besides the shift functor,
the data of a triangulated category consists of a class of distinguished triangles
E → F → G → E[1] consisting of objects and morphisms in D(X) satisfying cer-
tain axioms. In particular, every morphism f : E → F in D(X) can be completed
to a distinguished triangle

E
f−→ F → G → E[1] .

The object G is determined by f up to isomorphism and denoted by G = cone(f).
There is a long exact cohomology sequence

· · · → Hi−1(cone(f)) → Hi(E) → Hi(F ) → Hi(cone(f)) → Hi+1(E) → · · · .

2.3. Special objects of the derived category. In the following we will recall
the notions of exceptional, spherical, and P-objects in the derived category D(X)
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of coherent sheaves on a compact Kähler manifold X. Exceptional objects can be
used in order to decompose derived categories, while spherical and P-objects induce
auto-equivalences; see also section 6.6. Our main focus in this paper, however, will
be to characterize varieties where OX ∈ D(X) is an object of one of these types.

Definition 2.1. An object E ∈ D(X) is called exceptional if Hom∗(E,E) ∼= C[0].

Let X be a Fano variety, i.e., the anticanonical bundle ω−1
X is ample. Then,

by Kodaira vanishing, every line bundle on X is exceptional when considered as
an object of the derived category D(X); see also Remark 2.8. Similarly, every
line bundle on an Enriques surface is exceptional. Another typical example of an
exceptional object is the structure sheaf OC ∈ D(S) of a (−1)-curve P1 ∼= C ⊂ S
on a surface.

Definition 2.2 ([ST01]). An object E ∈ D(X) is called spherical if

(i) E ⊗ ωX
∼= E,

(ii) Hom∗(E,E) ∼= C[0]⊕ C[dimX] ∼= H∗(SdimX ,C).

Every line bundle on a strict Calabi–Yau variety is spherical. Another typical
example of a spherical object is the structure sheaf OC ∈ D(S) of a (−2)-curve
P1 ∼= C ⊂ S on a surface.

Definition 2.3 ([HT06]). Let n ∈ N. An object E ∈ D(X) is called Pn-object if

(i) E ⊗ ωX
∼= E,

(ii) there is an isomorphism of C-algebras Hom∗(E,E) ∼= C[x]/xn+1 with
deg x = 2.

Condition (ii) can be rephrased as Hom∗(E,E) ∼= H∗(Pn,C). As we will see
in the next subsection, every line bundle on a compact hyperkähler manifold is a
P-object. Another typical example is the structure sheaf of the center of a Mukai
flop.

Definition 2.4. Let n, k ∈ N. An object E ∈ D(X) is called Pn[k]-object if

(i) E ⊗ ωX
∼= E,

(ii) there is an isomorphism of C-algebras Hom∗(E,E) ∼= C[x]/xn+1 with
deg x = k.

Remark 2.5. If there is a Pn[k]-object E ∈ D(X), we have dimX = n · k by Serre
duality.

Remark 2.6. For n = 1, the P1[k]-objects coincide with the spherical objects. For
k = 2, the Pn[2]-objects are exactly the Pn-objects in the sense of Huybrechts and
Thomas.

The names “spherical” and “P-objects” come from the fact that their graded
endomorphism algebra coincides with the cohomology of spheres and projective
spaces, respectively. Hence, it would be natural to name a Pn[k]-object by a series
of manifolds whose cohomology is of the form C[x]/xn+1 with deg x = k. For k = 4,
there are the quaternionic projective spaces. For k > 4, however, there are probably
no such series. At least, there are no manifolds M satisfying the possibly stronger
condition that H∗(M,Z) ∼= Z[x]/xn+1 for deg x > 4 and n > 2; see [Hat02, Cor.
4L.10]. Hence, we will stick to the notion of Pn[k]-objects, which is justified by the
following remark.
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Remark 2.7. A Pn[k]-object is essentially the same as a P-functor (see [Add16])
D(pt) → D(X) with P-cotwist [−k]. In particular, as we will further discuss in
section 6.6, it induces an auto-equivalence of D(X).

Remark 2.8. Given a compact Kähler manifold X, the following are equivalent:

(i) OX is a Pn[k]-object.
(ii) Every line bundle on X is a Pn[k]-object.
(iii) Some line bundle on X is a Pn[k]-object.

The same holds if we replace the property of being a Pn[k]-object by the property
of being an exceptional object. Indeed, for every line bundle L on X, we have
isomorphisms of C-algebras

Hom∗(L,L) ∼= Hom∗(OX ,OX) ∼= H∗(OX),

where the latter is an algebra by the cup product. Furthermore, L⊗ωX
∼= L holds

if and only if ωX is trivial.

3. Hyperkähler and Enriques varieties

In this section we first review some results on hyperkähler manifolds and their
automorphisms. In particular, we give a proof of Observation 1.2, i.e., the fact that
hyperkähler manifolds can be characterized by the property that the trivial line
bundle is a P-object. Then we introduce and study strict Enriques varieties. They
are a generalization of Enriques surfaces to higher dimensions and can be realized
as quotients of hyperkähler varieties.

3.1. Hyperkähler manifolds. Let X be a compact Kähler manifold of dimension
2n. We say that X is hyperkähler if and only if its Riemannian holonomy group is
the symplectic group Sp(n). A compact Kähler manifold X is hyperkähler if and
only if it is irreducible holomorphic symplectic, which means that it is simply con-
nected and H2(X,Ω2

X) is spanned by an everywhere nondegenerate 2-form, called
symplectic form; see, e.g., [Bea83] or [Huy03].

The structure sheaf of a hyperkähler manifold is a Pn-object; see [HT06, Ex.
1.3(ii)]. This means that the canonical bundle ωX = Ω2n

X is trivial and H∗(OX) =
C[x]/xn+1; compare item (vi) of section 2.1. This follows essentially from the
holonomy principle together with Bochner’s principle. We will see in section 3.3
that also the converse holds, which amounts to Observation 1.2.

3.2. Automorphisms and their action on cohomology. In the later sections
we will often deal with automorphisms of Beauville–Bogomolov covers. There is
the following result of Beauville [Bea83, Sect. 3].

Lemma 3.1. Let X ′ =
∏

i Y
λi
i ×

∏
j Z

νj

j be a finite product with Yi ∈ HK2di

and Zj ∈ CYej such that the Yi and Zj are pairwise nonisomorphic. Then every
automorphism of X ′ preserves the decomposition up to permutation of factors. More
concretely, every automorphism f ∈ Aut(X ′) is of the form f =

∏
f
Y

λi
i

×
∏

f
Z

νj
j

with f
Y

λi
i

∈ Aut(Y λi
i ) and f

Z
νj
j

∈ Aut(Z
νj

j ). Furthermore, f
Y

λi
i

= (fYi1
× · · · ×

fYiλi
) ◦ σYi,f with fYiα

∈ Aut(Yi) and σYi,f ∈ Sλi
. Similarly, fZνi

j
= (fZj1

× · · · ×
fZiνi

) ◦ σZj ,f with fZjβ
∈ Aut(Zi) and σZj ,f ∈ Sνi

.
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Let X ′ =
∏

i Y
μi

i ×
∏

j Z
νj

j as above. For α = 1, . . . , μi we denote by yiα ∈
H2(OX′) the image of yi ∈ H2(OYi

) under pullback along the projection X ′ → Yi

to the αth Yi factor; compare section 2.1(vi). For β = 1, . . . , νj , the class zjβ is
defined analogously. By the Künneth formula, the yiα and zjβ together generate
the cohomology H∗(OX′), and we have

H∗(OX′) = C[{yiα}iα, {zjβ}jβ]/(ydi
iα, z

2
jβ) .(1)

Let Y ∈ HK. The action of automorphisms on H2(OY ) ∼= C defines a group
character which we denote by

ρY : Aut(Y ) → C∗, f �→ ρY,f .

In particular, an automorphism f ∈ Aut(Y ) of finite order ord f = m acts on
H2(OX) by multiplication by an mth root of unity ρY,f ∈ μm. Similarly, for Z ∈
CYk, we have a character ρZ : Aut(Z) → C∗ given by the action of automorphisms

on Hk(OZ).

Corollary 3.2. Let f ∈ Aut(X ′) be of finite order d. Then the induced action of
f on the cohomology of the structure sheaf is given by permutations of the yiα with
fixed i and the zjβ with fixed j together with multiplications by dth roots of unity.
This means

f : yiα �→ ρYiα,fYiα
· yiσYi,f

(α), zjβ �→ ρZjβ ,fZjβ
· zjσZj,f

(β)

with ρYiα,f , ρZjβ ,f ∈ μd.

The main takeaway for the computations in the latter sections is that the coho-
mology classes can only be permuted if the corresponding factors of the product
coincide.

Definition 3.3. Let Y ∈ HK and f ∈ AutY be of finite order. We call the order
of ρY,f ∈ C the symplectic order of f . The reason for the name is that f acts by

a root of unity of the same order, namely ρ̄Y,f , on H0(Ω2
X), i.e., on the symplectic

forms. In general, the symplectic order divides the order of f in Aut(X). We say
that f is purely nonsymplectic if its symplectic order is equal to ord f .

Lemma 3.4. Let Y ∈ HK2n, and let f ∈ Aut(Y ) be an automorphism of finite
order m such that the generated group 〈f〉 acts freely on Y . Then f is purely
nonsymplectic and m | n + 1. Similarly, every fixed-point-free automorphism of
finite order of a strict Calabi–Yau variety is a nonsymplectic involution.

Proof. This follows from the holomorphic Lefschetz fixed point theorem; compare
[BNWS11, Sect. 2.2]. �

Corollary 3.5. Let Y ∈ HK2n, and let X = Y/〈f〉 be the quotient by a cyclic group
of automorphisms acting freely. Then ωX is nontrivial and of finite order.
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Proof. The order of ωX is exactly the order of the action of f on H2n(OX), i.e.,
the order of ρnY,f ∈ C∗. By the previous lemma this order is finite and greater than
one. �

Here is a simple criterion for automorphisms of products to be fixed point free.

Lemma 3.6.

(i) Let X1, . . . , Xk be manifolds, and let fi ∈ Aut(Xi). Then

f1 × · · · × fk ∈ Aut(X1 × · · · ×Xk)

is fixed point free if and only if at least one of the fi is fixed point free.
(ii) Let X be a manifold, and let g1, . . . , gk ∈ Aut(X). Consider the automor-

phism

ϕ = (g1 × · · · × gk) ◦ (1 2 . . . k) ∈ Aut(Xk)

given by (p1, p2, . . . , pk) �→ (g1(pk), g2(p1), . . . , gk(pk−1)). Then ϕ is fixed
point free if and only if the composition gk ◦gk−1 ◦ · · ·◦g1 (or, equivalently,
gi ◦ gi−1 ◦ · · · ◦ gi+1 for some i = 1, . . . , k) is fixed point free.

We also will frequently use the following well-known fact.

Lemma 3.7. Let X ′ be a smooth projective variety, and let G ⊂ Aut(X ′) be a finite
subgroup which acts freely. Then, the quotient variety X := X ′/G is again smooth
projective and

χ(OX′) = χ(OX) · ordG .

Furthermore, H∗(OX) = H∗(OX′)G.

3.3. Proof of Observation 1.2. We already remarked in section 3.1 that the
structure sheaf of a hyperkähler manifold is a P-object. Hence, for the verification
of Observation 1.2 we only need to prove the following

Proposition 3.8. Let X be a compact Kähler manifold such that OX ∈ D(X) is
a Pn[2]-object. Then X is hyperkähler of dimension 2n.

Proof. As already mentioned in the introduction, this follows immediately from
[HNW11, Prop. A.1]. We will give a slightly different proof.

Recall that the assumption that OX is a Pn-object means

(i) ωX is trivial,
(ii) H∗(OX) ∼= C[x]/xn+1 with deg x = 2.

For n = 1, it follows easily by the Kodaira classification of surfaces that X ∈ K3 =
HK2. Hence, we may assume that n ≥ 2.

Assumption (i) says that, in particular, c1(X) = 0. Hence, we have a finite étale
covering X ′ → X and a Beauville–Bogomolov decomposition

X ′ = T ×
∏
i

Yi ×
∏
j

Zj .(2)

The plan is to show that X ′ is hyperkähler and the covering map is an isomorphism.

Convention 3.9. Whenever we have a Beauville–Bogomolov decomposition of the
form (2), T is a complex torus, Yi ∈ HK2di

is hyperkähler of dimension 2di, and
Zj ∈ CYej is a strict simply connected Calabi–Yau variety of dimension ej ≥ 3.

Furthermore, H2(OYi
) = 〈yi〉 and Hej (OZj

) = 〈zj〉.
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By assumption (ii), we have χ(OX) = n+ 1. On the other hand, since X ′ → X
is étale, say of degree m, we have

m(n+ 1) = m · χ(OX) = χ(OX′) = χ(T ) ·
∏
i

χ(OYi
) ·

∏
j

χ(OZj
) .(3)

This implies that T = pt and all ej are even. Otherwise, the right-hand side of
(3) would be zero. Since the torus part is trivial, X ′ is simply connected. Hence,

X ′ = X̂ is the universal cover of X = X̂/G where π1(X) ∼= G ⊂ Aut(X). It follows
by Lemma 3.7 that

C[x]/xn+1 ∼= H∗(OX) ∼= H∗(O
̂X)G ⊂ H∗(O

̂X) .

In particular, there must be an x ∈ H2(O
̂X)G ⊂ H2(O

̂X) such that xn �= 0 in

H2n(O
̂X). Since

2n = dimX = dim X̂ =
∑
i

2di +
∑
j

ej ,

we have H2n(O
̂X) = 〈s〉 with s =

∏
i y

di
i ·

∏
j zj . As deg x = 2 and deg zj = ej ≥ 3,

it follows that x is a linear combination of some yi. Hence, xn can be a nonzero
multiple of s only if no zj occurs in the expression of s as above. In other words, X ′

does not have Calabi–Yau factors. This means that X =
∏

i Yi and x =
∑

i yi (up

to coefficients which we can absorb by the choice of the generators yi of H
2(OYi

)).
Every element of G acts by some permutation on the yi; see Corollary 3.2. By
assumption, H2(OX) is of dimension one. Hence, H2(O

̂X)G = 〈x〉. It follows that
the action of G on the yi is transitive. Otherwise, there would be G-invariant
summands of x =

∑
i yi which would be linearly independent. Hence, again by

Corollary 3.2, we have X̂ ∼= Y � for some Y ∈ HK2d. For dimension reasons,
d · � = n.

We assume for a contradiction that � > 1. We have the G-invariant class

x2 =
∑
α

y2α + 2
∑
α�=β

yαyβ ∈ H4(OX′)G = H4(OX) .(4)

It follows by Corollary 3.2 that the two summands in (4) are again G-invariant.
But, by assumption, h4(OX) = 1. Thus, one of the two summands must be zero.
By (1), we see that the only possibility for this to happen is d = 1, i.e., Y ∈ K3.
Thus, � = n. Note that ordG = deg(X ′ → X) = m. By (3) or Lemma 3.7, we have
m | χ(X ′) = χ(Y )n = 2n. As G acts transitively on {y1, . . . , yn}, we get n | m | 2n.
Again by (3), also n+ 1 | 2n. For n ≥ 2, this is a contradiction.

Hence, we are in the case � = 1 which means that X̂ = Y ∈ HK2n. In particular,
χ(OX̂) = n + 1 = χ(X). By (3) we get m = 1 which means that we have an
isomorphism Y ∼= X. �

3.4. Enriques varieties. In this section we will consider a certain class of compact
Kähler manifolds with the property that OX ∈ D(X) is exceptional; see Definition
2.1. These manifolds are automatically algebraic by the following result; see, e.g.,
[Voi07, Exc. 7.1].

Lemma 3.10. Let X be a compact Kähler manifold with H2(OX) = 0. Then X is
projective.

From now on, let E be a smooth projective variety.
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Definition 3.11. We call E a strict Enriques variety if the following three condi-
tions hold:

(S1) The trivial line bundle OE is exceptional.
(S2) The canonical line bundle ωE is nontrivial and of finite order m := ord(ωE)

in PicE (this order is called the index of E).

(S3) The canonical cover Ẽ of E is hyperkähler.

This definition is inspired by similar, but different, notions of higher-dimensional
Enriques varieties which are as follows.

Definition 3.12 ([BNWS11]). We call E a BNWS (Boissière–Nieper-Wißkirchen–
Sarti) Enriques variety if the following three conditions hold:

(BNWS1) χ(OE) = 1.
(BNWS2) The canonical line bundle ωE is nontrivial and of finite order m :=

ord(ωE) in PicE (this order is called the index of E).
(BNWS3) The fundamental group of E is cyclic of the same order, i.e., π1(E) ∼=

μm.

Definition 3.13 ([OS11]). We call E an OS (Oguiso–Schröer) Enriques variety

if E is not simply connected and its universal cover Ê is a compact hyperkähler
manifold.

Proposition 3.14.

(i) Let E be a strict Enriques variety of index n+ 1. Then dimE = 2n.
(ii) Conversely, every smooth projective variety E satisfying (S2) with m =

n+ 1, (S3), and dimE = 2n is already a strict Enriques variety.
(iii) Strict Enriques varieties of index n + 1 are exactly the quotient varieties

of the form E = Y/〈g〉, where Y ∈ HK2n and g ∈ Aut(Y ) is purely non-
symplectic of order n+ 1 such that 〈g〉 acts freely on Y .

(iv) X is a strict Enriques variety if and only if it is BNWS Enriques and OS
Enriques.

Proof. Let E be a strict Enriques variety of index n+ 1 with canonical cover Ẽ ∈
HK2d. To verify (i) we have to show that d = n. By definition of the canonical

cover (see section 2.1(iii)), the covering map Ẽ → E is the quotient by a cyclic

group G of order n + 1. As Ẽ ∈ HK2d, we have χ(OY ) = d + 1. Also, χ(OE) = 1
by (S1). We get d = n by Lemma 3.7.

Consider now a smooth projective variety E with ordωE = n+1 and dimE = 2n

such that its canonical cover Ẽ is hyperkähler, necessarily of dim Ẽ = dimE = 2n.
Then, again by Lemma 3.7, we have χ(OE) = 1. Furthermore,

C[0] ⊂ H∗(OE) ∼= H∗(O
˜E)

μn+1 ⊂ H∗(O
˜E)

∼= C[y]/yn+1(5)

with deg y = 2. Since χ(OE) = 1 and H∗(O
˜E) is concentrated in even degrees, the

first inclusion must be an equality which means that OE is exceptional.
Let us prove part (iii). Given a strict Enriques variety E of index n + 1, the

canonical cover Y := Ẽ has the desired properties.
Conversely, let Y ∈ HK2n together with a purely nonsymplectic g ∈ Aut(Y ) of

order n+1 such that 〈g〉 acts freely on Y , and set E := Y/〈g〉. The action of g on the
cohomology H∗(OY ) = C[y]/yn+1 is given by g · yi = ρiY,gy

i. Since, by assumption,

ρY,g is a primitive (n + 1)-th root of unity, we get H∗(OE) ∼= H∗(OY )
G ∼= C[0],
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hence (S1). The action of g on the nth power of a symplectic form, hence on the
canonical bundle ωY , is also given by multiplication by ρY,g. It follows that the
canonical bundle ωE of the quotient is of order n+ 1 and Y → E is the canonical
cover.

For the proof of (iv), first note that (S1) implies (BNWS1). Furthermore, given a

strict Enriques variety E, the canonical cover Y = Ẽ of E is also the universal cover,
since Y is connected. From this, we get (BNWS2) and (BNWS3). Furthermore, E
is OS Enriques, since Y is hyperkähler.

Conversely, if E is BNWS and OS Enriques, its canonical and universal cover
coincide and is given by a hyperkähler manifold Y with the properties as in (iii). �

Note that the variety Y ∈ HK2n from part (iii) of Proposition 3.14 is the universal
as well as the canonical cover of E. We call Y the hyperkähler cover of E.

Another way to characterize strict Enriques varieties is as OS Enriques varieties
whose fundamental group have the maximal possible order; see [OS11, Prop. 2.4].

Strict Enriques varieties of index 2 are exactly the Enriques surfaces. To get
examples of higher index, by Proposition 3.14(iv), we just have to look for examples
which occur in [BNWS11] as well as in [OS11].

Theorem 3.15 ([BNWS11],[OS11]). There are strict Enriques varieties of index
2, 3, and 4.

Note that the statement does not exclude the existence of strict Enriques varieties
of index greater than 4, but, for the time being, there are no known examples.

In the known examples of index n + 1 = 3 or n + 1 = 4, the hyperkähler cover
Y is given by a generalized Kummer variety KnA ⊂ A[n+1]. More concretely, in
these examples A is an abelian surface isogenous to a product of elliptic curves with
complex multiplication, and there is a nonsymplectic automorphism f ∈ Aut(A) of
order n+1 which induces a nonsymplectic fixed-point-free automorphism Kn(f) ∈
Aut(KnA) of the same order.

Note that there are examples of varieties which are BNWS Enriques but not OS
Enriques [BNWS11, Sect. 4.3] and of the converse [OS11, Sect. 4].

We will use the following lemma in the proof of Theorem 4.5.

Lemma 3.16. Let E be a strict Enriques variety of index n + 1 with hyperkähler
cover Y . Then there is an isomorphism of algebras

⊕n
s=0 H

∗(ω−s
E ) ∼= H∗(OY ) =

C[y]/yn+1. Under this isomorphism, H∗(ω−s
E ) ∼= C · ys ∼= C[−2s].

Proof. Let π : Y → E be the morphism which realizes Y as the universal and canon-
ical cover of E. By the construction of the canonical cover (see section 2.1(iii)), we
have an isomorphism of OE-algebras π∗OY

∼= OE ⊕ ω−1
E ⊕ · · · ⊕ ω−n

E . Hence, we
get an isomorphism of graded C-algebras

C[y]/yn+1 ∼= H∗(OY ) ∼= H∗(OE)⊕H∗(ω−1
E )⊕ · · · ⊕H∗(ω−n

E )(6)

with deg y = 2. Hence, for the proof of the assertion, it is only left to show that
the generator y lives in the direct summand H2(ω−1

E ) under the decomposition

(6). We have y ∈ H2(ωs
E) for some s ∈ Z/(n + 1)Z. By Serre duality, we have

H∗(ωE) = C[−2n], hence yn ∈ H2n(ωE). It follows that

−s ≡ n · s ≡ 1 mod n+ 1 . �
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3.5. Enriques stacks. The main difficulty in finding pairs Y ∈ HK and f ∈ Aut(Y )
which, by Proposition 3.14(iii), induce strict Enriques varieties, is the condition that
〈f〉 acts freely.

Let us drop this assumption and consider a Y ∈ HK2n together with a purely
nonsymplectic automorphism f ∈ Aut(Y ) which may have fixed points. Then we
call the corresponding quotient stack E = [Y/〈f〉] a strict Enriques stack. In analogy
to the proof of Proposition 3.14, one can show that there is also the following
equivalent.

Definition 3.17. A strict Enriques stack is a smooth projective stack E such that
the following hold.

(S1’) The trivial line bundle OE is exceptional.
(S2’) The canonical bundle ωE is nontrivial and of finite order m := ord(ωE) in

Pic E (this order is called the index of E).
(S3’) The canonical cover Ẽ of E is a hyperkähler manifold of dimension dim Ẽ =

dimE = 2(m− 1).

Note that, in contrast to the case of strict Enriques varieties, the formula relating
index and dimension is not a consequence of the other conditions but is part of the
assumptions.

As alluded to above it is much easier to find examples of strict Enriques stacks
compared to strict Enriques varieties. Let S ∈ K3 together with a purely non-
symplectic automorphism f ∈ Aut(S) of order n+1 (which may, and, for n+1 > 2,
will have fixed points). Then the quotient of the associated Hilbert scheme of points
by the induced automorphism [X [n]/f [n]] is a strict Enriques stack. There are also
examples of strict Enriques stacks whose hyperkähler cover is K5(A); compare
[BNWS11, Rem. 4.1].

4. Construction of varieties with Pn[k]-units

4.1. Definition and basic properties.

Definition 4.1. Let X be a compact Kähler manifold. We say that X has a Pn[k]-
unit if OX is a Pn[k]-object in D(X). This means that the following two conditions
are satisfied:

(C1) the canonical bundle ωX is trivial;
(C2) there is an isomorphism of C-algebras H∗(OX)∼=C[x]/xn+1 with deg x = k.

Remark 4.2. If X has a Pn[k]-unit, we have dimX = n · k. This follows by Serre
duality.

Remark 4.3. For n = 1, compact Kähler manifolds with P1[k]-units are exactly the
strict Calabi–Yau manifolds of dimension k. For k = 2, compact Kähler manifolds
with Pn[2]-units are exactly the compact hyperkähler manifolds of dimension 2n;
see Observations 1.1 and 1.2 and Remark 2.5.

Remark 4.4. If n ≥ 2, the number k must be even. The reason is that the algebra
H∗(OX) is graded-commutative. Hence, every x ∈ Hk(OX) with k odd satisfies
x2 = 0.
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Since, in the following, we usually consider the case that k > 2, we will speak
about varieties with Pn[k]-units ; compare Lemma 3.10.

4.2. Nonexamples. In order to get a better understanding of the notion of vari-
eties with Pn[k]-units, it might be instructive to start with some examples which
satisfy some of the conditions but fail to satisfy others.

4.2.1. Products of Calabi–Yau varieties. Let Z ∈ CY8 and Z ′ ∈ CY4, and set
X := Z × Z ′. Then ωX is trivial and by the Künneth formula

H∗(OX) ∼= C[0]⊕ C[−4]⊕ C[−8]⊕ C[−12] .

Hence, as a graded vector space, H∗(OX) has the right shape for a P3[4]-unit. As
an isomorphism of graded algebras, however, the Künneth formula gives

H∗(OX) ∼= C[z]/z2 ⊗ C[z′]/z′2 ∼= C[z, z′]/(z2, z′2), deg z = 8 , deg z′ = 4 .

This means that, as a C-algebra, H∗(OX) is not generated in degree 4 so that OX

is not a P3[4]-object.

4.2.2. Hilbert schemes of points on Calabi–Yau varieties. For every smooth projec-
tive variety X and n = 2, 3, the Hilbert schemes X [n] of n points on X are smooth
and projective of dimension n · dimX. If dimX ≥ 3 and n ≥ 4, the Hilbert scheme
X [n] is not smooth; see [Che98].

Let now X be a Calabi–Yau variety of even dimension k and n = 2 or n = 3.
Then there is an isomorphism of algebras H∗(OX[n]) ∼= C[x]/(xn+1) with deg x = k.
The reason is that X [n] is a resolution of the singularities of the symmetric quotient
variety Xn/Sn, which has rational singularities, by means of the Hilbert–Chow
morphism X [n] → Xn/Sn. For k = 2, the Hilbert scheme of points on a K3 surface
is one of the few known examples of a compact hyperkähler manifold which means
that X [n] has a Pn[2]-unit for X ∈ K3. For dimX = k > 2, however, the canonical
bundle ωX[n] is not trivial as this resolution is not crepant.

In contrast, the symmetric quotient stack [Xn/Sn] has a trivial canonical bundle
for dimX = k an arbitrary even number, and is, in fact, a stack with Pn[k]-unit;
see section 6.4 for some further details.

4.3. Main construction method. In this section given strict Enriques varieties
of index n+ 1, we construct a series of varieties with Pn[2k]-units. In other words
we prove the implication (iii)=⇒(ii) of Theorem 1.3.

Let E1, . . . , Ek be strict Enriques varieties of index n + 1. We do not assume
that the Ei are nonisomorphic. For the time being, there are known examples of
such Ei for n = 1, 2, 3; see Theorem 3.15. We set F := E1 × · · · × Ek.

Theorem 4.5. The canonical cover X := F̃ of F has a Pn[2k]-unit.

Proof. By definition of the canonical cover, ωX is trivial. Hence, condition (C1)
of Definition 4.1 is satisfied. It is left to show that H∗(OX) ∼= C[x]/xn+1 with
deg x = 2k. Let π : X → F be the étale cover with π∗OX

∼= OF ⊕ω−1
F ⊕ · · · ⊕ω−n

F .
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Note that ωF
∼= ωE1

�· · ·�ωEk
. By the Künneth formula together with Lemma 3.16,

we get

H∗(OX) ∼= H∗(OF )⊕ H∗(ω−1
F )⊕ · · · ⊕H∗(ω−n

F )

∼=
( k⊗
i=1

H∗(OEi
)
)
⊕
( k⊗
i=1

H∗(ω−1
Ei

)
)
⊕ · · · ⊕

( k⊗
i=1

H∗(ω−n
Ei

)
)

∼= C⊕ C · y1 · · · yk ⊕ · · · ⊕ C · yn1 · · · ynk
∼= C[x]/xn+1,

where x := y1 · · · yn is of degree 2k. �
Remark 4.6. Let fi ∈ Aut(Yi) be a generator of the group of deck transformations
of the cover Yi → Ei. In other words Ei = Yi/〈fi〉. Then we can describe X
alternatively as X = (Y1 × · · · × Yk)/G, where

μk−1
n+1

∼= G =
{
fa1
1 ×· · ·×fak

k | a1+ · · ·+ak ≡ 0 mod n+1
}
⊂ Aut(Y1×· · ·×Yn) .

Remark 4.7. In the case n = 1, one can replace the Yi ∈ K3 by strict Calabi–
Yau varieties Zi of dimension dimZi = di together with fixed-point-free involutions
fi ∈ Aut(Zi). Then the same construction gives a variety X with P1[d1 + · · ·+ dk]-
unit, i.e., a strict Calabi–Yau variety of dimension dimX = d1 + · · · + dk. This
coincides with a construction of Calabi–Yau varieties by Cynk and Hulek [CH07].

Remark 4.8. The construction still works if we replace one of the strict Enriques
varieties Ei by an Enriques stack. The reason is that the group G still acts freely
on Y1 × · · · × Yk, even if one of the fi has fixed points; see Lemma 3.6.

5. Structure of varieties with Pn[k]-units

5.1. General properties. As mentioned in Remark 4.3, varieties with P1[k]-units
are exactly the strict Calabi–Yau varieties (not necessarily simply connected) and
manifolds with Pn[2]-units are exactly the compact hyperkähler manifolds. From
now on, we will concentrate on the other cases; i.e., we assume that n > 1 and
k > 2. By Remark 4.4, this means that k is even.

Lemma 5.1. Let X be a variety with a Pn[k]-unit. Then there is an étale cover
X ′ → X of the form X ′ =

∏
i Yi ×

∏
j Zj with Yi ∈ HK and Zi ∈ CY of even

dimension.

Proof. Let X ′ = T × Yi ×
∏

j Zj be a Beauville–Bogomolov cover of X as in Con-
vention 3.9. The proof is the same as the first part of the proof of Proposition 3.8:
We have χ(OX) = n+ 1 �= 0, hence χ(OX′) �= 0. It follows that there cannot be a
torus or an odd-dimensional Calabi–Yau factor occurring in the decomposition on
X ′. �

In particular, X ′ is simply connected and hence agrees with the universal cover,

X̂ = X ′ =
∏
i

Yi ×
∏
j

Zj .

Since H∗(OX) = C[x]/xn+1 with deg x = k ≥ 4, we see by the Künneth formula

that X̂ → X cannot be an isomorphism; compare (1).

Corollary 5.2. For X a variety with a Pn[k]-unit, π1(X) is a nontrivial finite
group.
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5.2. The case k = 4. Now we focus on the case k = 4 where we can determine the
decomposition of the universal cover concretely.

Proposition 5.3. Let n ≥ 3, and let X be a variety with Pn[4]-unit. Then the

universal cover X̂ is a product of two hyperkähler varieties of dimension 2n.

We divide the proof of this statement into several lemmas. So in the following
let X be a variety with a Pn[4]-unit where n ≥ 3.

Lemma 5.4. The universal cover X̂ of X is a product of compact hyperkähler
manifolds.

Proof. By Lemma 5.1 we have X̂ =
∏

i Yi ×
∏

j Zj with Yi ∈ HK2di
and Zj ∈ CYej

with ei ≥ 4 even. Let π1(X) ∼= G ⊂ Aut(X̂) such that X = X̂/G. Analogously
to the proof of Proposition 3.8, we see that there is an x ∈ H4(O

̂X)G ∼= H4(OX)

such that xn is a nonzero multiple of the generator
∏

i y
di
i ·

∏
j zj of H4n(O

̂X). In

particular, all the zj have to occur in the expression of x ∈ H4(O
̂X) in terms of the

Künneth formula. Hence, ej = 4 for all j. We get

x =
∑
j

zj + terms involving the yi,(7)

where we absorb possible coefficients in the choice of the generators zj of H4(OZj
).

Both summands of (7) are G-invariant. This follows by the G-invariance of x
together with Corollary 3.2. Hence, one of the two summands must vanish. Con-

sequently, X̂ either has no Calabi–Yau or no hyperkähler factors, i.e., X̂ =
∏

Yi or

X̂ =
∏

Zj .
Let us assume for a contradiction that the latter is the case. We have ej =

dimZj = 4 for all j. Since dim X̂ = dimX = 4n, there must be n factors Zj ∈ CY4

of X̂. Hence, χ(O
̂X) = 2n. By Lemma 3.7 we have

χ(O
̂X) = χ(OX) · ord(G) .(8)

Hence, χ(OX) = n+ 1 | 2n. Furthermore, G must act transitively on {z1, . . . , zn}.
Otherwise, there would be G-invariant summands of x =

∑
zj contradicting the

assumption that h4(OX) = 1. Hence, n | ordG | 2n which, for n ≥ 2, is not
consistent with n+ 1 | 2n. �

Hence, we have X̂ =
∏

i∈I Yi with Yi ∈ HK2di
for some finite index set I and

there is a G-invariant

0 �= x =
∑
i

ciiy
2
i +

∑
i �=j

cijyiyj ∈ H4(O
̂X), cij ∈ C .(9)

Again by Corollary 3.2 both summands in (9) are G-invariant so that one of them
must be zero.

Lemma 5.5. There is a nonzero G-invariant x ∈ H4(O
̂X) of the form x =∑

i �=j cij · yiyj.

Proof. Let us assume for a contradiction that we are in the case that x =
∑

i y
2
i ,

where we hide the coefficients cii in the choice of the yi. By the same arguments
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as above, G must act transitively on the set of yi. Hence, by Corollary 3.2 we have

X̂ = Y �, Y ∈ HK2d with d� = 2n. We must have � ≥ 2 by Corollary 3.5. Then

x2 =
∑
i

y4i + 2
∑
i �=j

y2i y
2
j ∈ H8(O

̂X)G,

and both summands are G-invariant. Hence, one of them must be zero, and the
only possibility for that to happen is that d < 4. Since xn is a scalar multiple
of the generator yd1y

d
2 · · · yd� of H4n(O

̂X), we must have d = 2. Hence, � = n and
χ(O

̂X) = 3n. By (8) and the fact that G acts transitively on {y1, . . . , yn}, we get
the contradiction n | 3n and n+ 1 | 3n. �

Lemma 5.6. We have |I| = 2 which means that X̂ = Y × Y ′ with Y, Y ′ ∈ HK.

Proof. Let 0 �= x =
∑

i �=j cijyiyj ∈ H4(O
̂X)G with cij ∈ C, some of which might be

zero, as in Lemma 5.5. As already noted above, we have |I| ≥ 2 by Corollary 3.5.
Let us assume that |I| ≥ 3. This assumption will be divided into several subcases,
each of which leads to a contradiction. We have

(10) x2 =
∑
i �=j

c2ij · y2i y2j +
∑

h �=i �=j

chicij · yhy2i yj +
∑

g �=h �=i �=j

ĉghij · ygyhyiyj ,

ĉghij = cghcij + · · · .
All three summands are G-invariant by Corollary 3.2, hence two of them must be
zero. For one of the first two summands of (10) to be zero, the square of some yi
must be zero, i.e., some Yi0 must be a K3 surface. Write the index set I of the

decomposition X̂ =
∏

i∈I Yi as I = N � M where N = G · i0 is the orbit of i0.
Here we consider the G-action on I given by the permutation part of the auto-

equivalences in G ⊂ Aut(X̂); see Lemma 3.1. With this notation, Yj = Yi0 ∈ K3
for j ∈ N .

Let us first consider the case that G acts transitively on the factors of the decom-

position of X̂, i.e., I = N . Then, by dimension reasons, |I| = 2n. In other words,

X̂ = Y 2n with Y ∈ K3. Hence, χ(O
̂X) = 22n. By (8) we get the contradiction

2n | 22n and n+ 1 | 22n.
In the case that M �= 0, all the nonzero coefficients cij in the G-invariant x =∑
i �=j cijyiyj must be of the form i ∈ N and j ∈ M (or the other way around).

Indeed, otherwise we would haveG-invariant proper summands of x in contradiction
to the assumption H4(O

̂X)G = 〈x〉. Furthermore, for all i ∈ N there must be a
nonzero cii′ and for all j′ ∈ M there must be a nonzero cjj′ since xn is a nonzero

multiple of the generator
∏

i∈N yi ·
∏

j∈M y
dj

j of H4n(O
̂X). Hence, to avoid proper

G-invariant summands of x, the group G must also act transitively on M . It follows

that X̂ = Y � × (Y ′)�
′
where � = |N |, �′ = |M |, Y ∈ K3, and Y ′ ∈ HK2d′ for some

d′. Now, xn is a nonzero multiple of

�∏
i=1

yi ·
�′∏

j=1

(y′j)
d′ ∈ H4n(O

̂X) .

Since all the nonzero summands of x are of the form cijyiy
′
j , we get that � = n =

�′ · d′. In particular,

X̂ = Y n × (Y ′)�
′
.(11)
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First, we consider for a contradiction the case that �′ = 1, hence X̂ = Y n × Y ′

with Y ∈ K3 and Y ′ ∈ HK2n. Then, by (8), we get ordG = 2n. We have (up
to coefficients which we avoid by the correct choice of the yi), x =

∑n
i=1 yiy

′.
Accordingly, x2 =

∑
i �=j yiyj(y

′)2. Hence, G acts transitively on {y1, . . . , yn} as

well as on {yiyj | 1 ≤ i < j ≤ n}. We get the contradiction n | 2n and
(
n
2

)
| 2n.

Note that, for this to be a contradiction, we need the assumption n ≥ 3. Indeed,
in section 6.2, we will see examples of a variety X with a P2[4]-unit whose canonical

covers are of the form X̂ = Y 2 × Y ′ with Y ∈ K3 and Y ′ ∈ HK4.
Now, let �′ > 1 in (11). Then, we get

x2 =
∑
i �=j,i′

cii′cji′ · yiyj(y′i′)2 +
∑

i �=j,i′ �=j′

c̃iji′j′ · yiyjy′i′y′j′ , c̃iji′j′ = cii′cjj′ + cij′cji′ ,

(12)

where both summands are G-invariant. Hence, in order to avoid linearly indepen-
dent classes in H8(O

̂X)G, one of them must be zero.
Let us assume for a contradiction that all the c̃iji′j′ are zero. Then all the cii′

with i ∈ N and i′ ∈ M are nonzero. Indeed, as mentioned above, given i ∈ N and
i′ ∈ M , there exist j ∈ N and j′ ∈ M such that cij′ �= 0 �= cji′ . By c̃iji′j′ = 0, it
follows that also cii′ �= 0 �= cjj′ . Given pairwise distinct h, i, j ∈ N and i′, j′ ∈ M
we consider the following term, which is the coefficient of yhyiyj(y

′
i′)

2yj′ in x3,

C : = chi′cii′cjj′ + chi′cij′cji′ + chj′cii′cji′(13)

= chi′ c̃iji′j′ + chj′cii′cji′

= cii′ c̃hji′j′ + chi′cij′cji′

= cji′ c̃hii′j′ + chi′cii′cjj′ .

By the vanishing of the c̃, we get

C = chi′cii′cjj′ = chi′cij′cji′ = chj′cii′cji′ .

By the nonvanishing of all the c, we get C �= 0. But at the same time by (13) we
have 3C = C; a contradiction.

We conclude that the first summand of (12) is zero. This can only happen
for (y′i′)

2 = 0, hence Y ′ ∈ K3. Then χ(O
̂X) = 22n and, as before, we get the

contradiction that n | 22n and n+ 1 | 22n. �

Proof of Proposition 5.3. By now we know that X̂ = Y × Y ′ with Y ∈ HK2d and
Y ∈ HK2d′ , and x = yy′. We have d + d′ = 2n. Furthermore, 0 �= xn = yn(y′)n.
Hence, d = n = d′. �

Remark 5.7. The proof of Proposition 5.3 becomes considerably simpler if one
assumes that n + 1 is a prime number. In this case it follows directly by Lemma
3.7 that the universal cover must have a factor Y ∈ HK2n. Hence, there are much
fewer cases one has to deal with.

Theorem 5.8. Let n ≥ 3, and let X be a variety with a Pn[4]-unit.

(i) We have X = (Y × Y ′)/G with Y, Y ′ ∈ HK2n. The group π1(X) ∼= G ⊂
Aut(Y × Y ′) acts freely and is of the form G = 〈f × f ′〉 with f ∈ Aut(Y )
and f ∈ Aut(Y ′) purely symplectic of order n+ 1.

(ii) If n + 1 = pν is a prime power, at least one of the cyclic groups 〈f〉 ⊂
Aut(Y ) and 〈f ′〉 ⊂ Aut(Y ′) acts freely.
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Before giving the proof of the theorem, let us restate, for convenience, the special
case of Lemma 3.6 for automorphisms of products with two factors.

Lemma 5.9. Let X and Y be manifolds, and let g, f ∈ Aut(X) and h ∈ Aut(Y ).

(i) g × h ∈ Aut(X × Y ) is fixed point free if and only if at least one of g and
h is fixed point free.

(ii) Let ϕ := (f × g) ◦ (1 2) ∈ Aut(X2) be given by (a, b) �→ (f(b), g(a)). Then,
ϕ is fixed point free if and only if f ◦ g and g ◦ f are fixed point free.

Proof of Theorem 5.8. The fact that X = (Y × Y ′)/G with Y, Y ′ ∈ HK2n and G ∼=
π1(X) is just a reformulation of Proposition 5.3. By the proof of this proposition
we see that H∗(OY×Y ′)G ∼= H∗(OX) is generated by x = yy′ in degree 4.

Let us assume for a contradiction that G contains an element which permutes
the factors Y and Y ′, in which case we have Y = Y ′ by Lemma 3.1. In other words
there exists an ϕ = (f × g) ◦ (1 2) ∈ G as in Lemma 5.9(ii). Hence, f ◦ g is fixed
point free. By Lemma 3.4 the composition f ◦ g is nonsymplectic, i.e., ρf◦g �= 1.
But ρf◦g = ρf · ρg so that ϕ acts nontrivially on x = yy′ in contradiction to the
G-invariance of x.

Hence, every element of G is of the form g × h as in Lemma 3.6(i). We consider
the group homomorphisms ρY : G → C∗ and ρY ′ : G → C∗. Their images are of
the form μm and μm′ , respectively. We must have m,m′ ≥ n+ 1. Indeed, ym and
(y′)m

′
are G-invariant but, for m ≤ n or m′ ≤ n, are not contained in the algebra

generated by x = yy′. Since |G| = n+ 1, assertion (i) follows.
Let now n + 1 = pν be a prime power, and let G = 〈f〉. Let us assume for a

contradiction that there exist a, b ∈ N with n+ 1 = pν � a, b such that fa and (f ′)b

have fixed points. Note that, in general, if an automorphism g has fixed points, also
all of its powers have fixed points. Furthermore, for two elements a, b ∈ Z/(pν) we
have a ∈ 〈b〉 or b ∈ 〈a〉. Hence, (f×f ′)a or (f×f ′)b has fixed points in contradiction
to part (i). �

This proves the implication (i)=⇒(iii) of Theorem 1.3. Indeed, for n+1 a prime
power, the above Theorem says that Y/〈f〉 or Y ′/〈f ′〉 is a strict Enriques variety;
see Proposition 3.14(iii). Note that Theorem 5.8 above does not hold for n = 2;
see section 6.2. However, both conditions (i) and (iii) of Theorem 1.3 hold true for
n = 2; see Theorem 3.15 and Corollary 1.4.

Remark 5.10. The proof of part (ii) of Theorem 5.8 does not work if n+1 is not a
prime power. For example, if n+ 1 = 6, one could obtain a variety with P5[4]-unit
as a quotient X = (Y ×Y ′)/〈f ×g〉 with Y, Y ′ ∈ HK10 such that f and g are purely
nonsymplectic of order 6, and f , f2, f4, f5, g, g3, g5 are fixed point free but f3, g2,
and g4 are not. The author does not know whether hyperkähler manifolds together
with these kinds of automorphisms exist.

6. Further remarks

6.1. Further constructions using strict Enriques varieties. Given strict En-
riques varieties of index n + 1, there are, for k ≥ 6, further constructions of
varieties with Pn[k]-units besides the one of section 4.3. Let Y ∈ HK2n and
f ∈ Aut(Y ) purely symplectic of order n + 1 such that 〈f〉 acts freely; i.e., the
quotient E = Y/〈f〉 is a strict Enriques variety. We consider the (n + 1)-cycle
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σ := (1 2 · · ·n+ 1) ∈ Sn+1 and the subgroup G(Y ) ⊂ Aut(Y n+1) given by

G(Y ) :=
{
(fa1 × · · · × fan+1) ◦ σa | a1 + · · ·+ an+1 ≡ a mod n+ 1

}
.

Every nontrivial element of G(Y ) acts without fixed points on Y n+1 by Lemma 3.6.
There is the surjective homomorphism

G(Y ) → Z/(n+ 1)Z, (fa1 × · · · × fan+1) ◦ σa �→ a mod n+ 1,

and we denote the fibers of this homomorphism by Ga(Y ).
Now, consider further Z1, . . . , Zk ∈ HK2n together with purely nonsymplectic

gi ∈ Aut(Zi) of order n+ 1 such that 〈gi〉 acts freely and

ρZi,gi = ρY,f for all i = 1, . . . , k.(14)

The equality (14) can be achieved as soon as we have any purely nonsymplectic
automorphisms gi ∈ Aut(Zi) of order n + 1 by replacing the gi by an appropriate
power gνi with gcd(ν, n + 1) = 1. We consider the subgroup G(Y ;Z1, . . . , Zk) ⊂
Aut(Y n+1 × Z1 × · · · × Zk) given by

G(Y ;Z1, . . . , Zk)

:=
{
F × gb11 × · · · × gbkk | F ∈ Ga(Y ) , a+ b1 + · · ·+ bk ≡ 0 mod n+ 1

}
.

Proposition 6.1. The quotient X := (Y n+1 × Z1 × · · · × Zk)/G(Y ;Z1, . . . , Zk) is
a smooth projective variety with Pn[2(n+ 1 + k)]-unit.

Proof. One can check using Lemma 3.6 that the group G := G(Y ;Z1, . . . , Zk) acts
freely on X ′ := Y n+1 × Z1 × · · · × Zk. Hence, X is indeed smooth.

By the defining property of the elements of G(Y ;Z1, . . . , Zk) together with (14),
we see that x := y1y2 · · · yn+1z1z2 · · · zk is G-invariant. Hence, as xi �= 0 for 0 ≤
i ≤ n, we get the inclusion

C[x]/xn+1 ⊂ H∗(OX′)G ∼= H∗(OX), deg x = 2(n+ 1 + k) .(15)

Also, ordG(Z1, . . . , Zk) = (n+ 1)n+1+k−1. By Lemma 3.7, we get χ(OX′) = n+ 1
so that the inclusion (15) must be an equality which is (C2). Finally, the canonical

bundle ωX is trivial since G acts trivially on 〈xn〉 = HdimX′
(OX′) ∼= H0(ωX′). �

Remark 6.2. For n ≥ 2, the group G(Y ;Z1, . . . , Zk) is not abelian. Since X ′ → X
is the universal cover, we see that, for k ≥ 4, there are examples of varieties with
Pn[k]-units which have a nonabelian fundamental group.

Remark 6.3. Again, for one i ∈ {1, . . . k}, we may drop the assumption that 〈gi〉
acts freely; compare Remark 4.8.

Remark 6.4. One can further generalize the above construction as follows. Consider
hyperkähler manifolds Y1, . . . , Ym, Z1, . . . , Zk ∈ HK2n together with fi ∈ Aut(Yi)
and gj ∈ Aut(Zj) purely nonsymplectic of order n + 1 such that the generated

cyclic groups act freely. Set X ′ := Y n+1
1 × · · · × Y n+1

m ×Z1 × · · · ×Zk and consider
G := G(Y1, . . . , Ym;Z1, . . . , Zk) ⊂ Aut(X ′) given by

G =
{
F1×· · ·×Fm×gb11 ×· · ·×gbkk | Fi ∈ Gai

(Y ) , a1+ · · ·+am+b1+ · · ·+bk ≡ 0

mod n+ 1
}
.

Then, X := X ′/G has a Pn[2(m(n+ 1) + k)]-unit.
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Remark 6.5. In the case n = 1, one may replace the K3 surfaces Yi and Zj by strict
Calabi–Yau varieties of arbitrary dimensions. Still, the quotient X will be a strict
Calabi–Yau variety.

6.2. A construction not involving strict Enriques varieties. As mentioned

in section 5.2, there is a variety X with P2[4]-unit whose universal cover X̂ is
not a product of two hyperkähler varieties of dimension 4. This shows that the
assumption n ≥ 3 in Proposition 5.3 is really necessary.

For the construction let Z be a strict Calabi–Yau variety of dimension dimZ = e
together with a fixed-point-free involution ι ∈ Aut(Z). Necessarily, ρZ,ι = −1;
see Lemma 3.4. Furthermore, let Y ∈ HK4 together with a purely nonsymplectic
f ∈ Aut(Y ) of order 4. Note that g must have fixed points on Y . Such pairs
(Y, f) exist. Take a K3 surface S (an abelian surface A) together with a purely
nonsymplectic automorphism of order 4 and Y = S[2] (Y = K2A) together with
the induced automorphism.

Now, consider G(Z) ⊂ Aut(Z2) as in the previous section. It is a cyclic group of
order 4 with generator g = (ι × id) ◦ (1 2). Set X ′ = Y × Z2 and G := 〈f × g〉 ⊂
Aut(X ′). The group G acts freely, since G(Z) does; see Lemma 5.9. One can check
that x = yz1 + i · yz2 ∈ H2+e(OX′) is G-invariant. By the same argument as in the
proof of Proposition 6.1, we conclude that X has a P2[2 + e]-unit. In particular, in
the case that Z ∈ K3, we get a variety with P2[4]-unit.

6.3. Possible construction for k = 6. In contrast to the case k = 4 and n + 1
a prime power (see Theorem 1.3), there might be a variety with Pn[6]-unit even if
there is no Enriques variety of index n+1 but one of index 2n+1. Of course, since
there are at the moment only known examples of strict Enriques varieties of index
2, 3, and 4, this is only hypothetical.

Indeed, let Y ∈ HK4n together with subgroup 〈f〉 ⊂ Aut(Y ) acting freely, where
f is purely nonsymplectic of order 2n + 1, and let Y ′ ∈ HK2n together with f ′ ∈
Aut(Y ′) nonsymplectic of order n + 1 with ρY,f = ρ−1

Y ′,f ′ . Necessarily, f ′ has fixed

points; see Lemma 3.4. Then G = 〈f × f ′2〉 acts freely on Y and x = y2 · y′ is
G-invariant. It follows that X = (Y × Y ′)/G has a Pn[6]-unit.

6.4. Stacks with Pn[k]-units. Let X be a smooth projective stack. In complete
analogy to the case of varieties, we say that X has a Pn[k]-unit if OX ∈ D(X ) is a
Pn[k]-object. Again, this means

(C1’) the canonical bundle ωX is trivial,
(C2’) there is an isomorphism of C-algebras H∗(OX )∼=C[x]/xn+1 with deg x = k.

In contrast to the case of varieties, it is very easy to construct stacks with Pn[k]-
units.

Let Z ∈ CYk with k even. Then, the symmetric group Sn acts on Zn by
permutation of the factors, and we call the associated quotient stack X = [Zn/Sn]
the symmetric quotient stack. Then, as k = dimZ is even, the canonical bundle of
X is trivial; see [KS15a, Sect. 5.4]. Condition (C2’) follows by the Künneth formula

H∗(OX ) ∼= H∗(OZn)Sn ∼= (H∗(OZ)
⊗n)Sn ∼= Sn(H∗(OZ)) .

There are also plenty of other examples of stacks with Pn[k]-units. Let S ∈ K3
with ι ∈ S a nonsymplectic involution and ι[n] ∈ Aut(S[n]) the induced automor-
phism on the Hilbert scheme of n points on S. Then, for n even, the associated
quotient stack [X [n]/ι[n]] has a Pn/2[4]-unit. In contrast, if ι is fixed point free and
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n is odd, ι[n] is again fixed point free and the quotient X [n]/ι[n] is an OS Enriques
variety; see [OS11, Prop. 4.1].

Also, all the constructions of the earlier sections lead to stacks with Pn[k]-units
if we replace the strict Enriques varieties by strict Enriques stacks.

6.5. Derived invariance of strict Enriques varieties. In [Abu15] Abuaf con-
jectured that the homological unit is a derived invariant of smooth projective va-
rieties. This means that for two varieties X1, X2 with D(X1) ∼= D(X2), we should
have an isomorphisms of C-algebras H∗(OX1

) ∼= H∗(OX2
).

In regard to this conjecture, one would like to prove that the class of varieties
with Pn[k]-units is stable under derived equivalences. This is true for k = 2: In
[HNW11] it is shown that the class of compact hyperkähler manifolds is stable under
derived equivalence. However, the methods of the proof do not seem to generalize
to higher k. At least, we can use the result of [HNW11] in order to show that the
class of strict Enrqiues varieties is derived stable.

Lemma 6.6. Let E1 be a strict Enriques variety of index n + 1, and let E2 be a
Fourier–Mukai partner of E2; i.e., E2 is a smooth projective variety with D(E1) ∼=
D(E2). Then E2 is also a strict Enriques variety of the same index n+ 1.

Proof. By Proposition 3.14, condition (S1) of a strict Enriques variety of index n+1
can be replaced by the condition dimE1 = 2n. The dimension of a variety and the
order of its canonical bundle are derived invariants; see, e.g., [Huy06, Prop. 4.1].
Hence, also dimE2 = 2n and ordωE2

= n+ 1.

It remains to show that the canonical cover Ẽ2 is again hyperkähler. Indeed, the

equivalence D(E1) ∼= D(E2) lifts to an equivalence of the canonical covers D(Ẽ1) ∼=
D(Ẽ2) and the class of hyperkähler varieties is stable under derived equivalences;
see [BM98] and [HNW11], respectively. �

6.6. Auto-equivalences of varieties with Pn[k]-unit. As mentioned in Remark
2.7, every Pn[k]-object E ∈ D(X) induces an auto-equivalence, called P-twist,
PE ∈ Aut(D(X)). This can be seen as a special case of [Add16, Thm. 3] or as
a straightforward generalization of [HT06, Prop. 2.6]. We will describe the twist
only in the special case E = OX . In particular, we assume that X has a Pn[k]-unit.
Then, by Remark 2.8, every line bundle L ∈ PicX is a Pn[k]-object too. How-
ever, it suffices to understand the twist PX := POX

as we have PL = MLPXM−1
L

where ML = ( ) ⊗ L is the auto-equivalence given by tensor product with L; see
[Kru15, Lem. 2.4].

The P-twist along OX is constructed as the Fourier–Mukai transform PX :=
FMQ : D(X) → D(X) where

Q = cone
(
cone(OX×X

x�id− id�x−−−−−−−−→ OX×X)
r−→ OΔ

)
∈ D(X ×X) .

Here, x is a generator of Hk(OX) ∼= Hom(OX [−k],OX) and r : OX×X → OΔ is
the restriction of sections to the diagonal. The double cone makes sense, since
r ◦ (x � id− id�x) = 0; see [HT06, Sect. 2] for details. On the level of objects
F ∈ D(X), the twist PX is given by

PX(F ) = cone
(
cone

(
H∗(F )⊗OX [−k] → H∗(F )⊗OX

)
→ F

)
.(16)

We summarize the main properties of the twist PX in the following.
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Proposition 6.7. The P-twist PX : D(X) → D(X) is an auto-equivalence with the
following properties.

(i) PX(OX) = OX [−k(n+ 1) + 2].
(ii) PX(F ) = F for F ∈ O⊥

X = {F ∈ D(X) | Hom∗(OX , F ) = 0}.
(iii) Let Φ ∈ Aut(D(X)) with Φ(OX) = OX [m] for some m ∈ Z. Then the

auto-equivalences Φ and PX commute.

Proof. For the first two properties, see [HT06, Sect. 2] or [Add16, Sect. 3.4 & 3.5].
Part (iii) follows from [Kru15, Lem. 2.4]. �

Lemma 6.8. Let X be a variety with Pn[k]-unit with k ≥ 2 (not an elliptic curve).
Let Z1, Z2 ⊂ X be two disjoint closed subvarieties. and set

F := RHom
(
PX(OZ1

), PX(OZ2
)
)
.

Then Hom∗(OX , F ) = H∗(F ) = 0 and F �= 0. In particular, the orthogonal com-
plement of OX is nontrivial.

Proof. Clearly, Hom∗(OZ1
,OZ2

) = 0. Using the fact that the equivalence PX is, in
particular, fully faithful and standard compatibilities between derived functors, we
get

0 = Hom∗(PX(OZ1
), PX(OZ2

)
)
= Hom∗(OX , RHom

(
PX(OZ1

), PX(OZ2

))
.

It is left to show that F := RHom
(
PX(OZ1

), PX(OZ2
)
)
�= 0. We denote by αi the

top nonzero degree of H∗(OZi
) for i = 1, 2. Let V := X \ (Z1 ∪ Z2). Then by (16)

the cohomology of PX(OZi
) is concentrated in degrees between −1 and αi + k − 2

with H−1(PX(OZi
))|V ∼= OV and Hαi+k−2(PX(OZi

))V ∼= OV ⊗ Hαi(OZi
). Hence,

the spectral sequence

Ep,q
2 = ⊕i Extp

(
Hi(P (OZ1

)),Hi+q(P (OZ1
))
)
|V =⇒ Ep+q = Hp+q(F )|V

is concentrated in the quadrant to the upper right of (0,−α1−k+1). Furthermore,

we have E0,−α1−k+1
2

∼= OV ⊗Hα1(OZ1
) �= 0. Hence H−α1−k+1(F ) �= 0. �

Let now X be obtained from strict Enriques varieties via the construction of
section 4.3. This means that X = (Y1 × · · · × Yk)/G with Yi ∈ HK2n and

G =
{
fa1
1 × · · · × fak

k | a1 + · · ·+ ak ≡ 0 mod n+ 1
}
,

where the fi ∈ Aut(Yi) are purely nonsymplectic of order n + 1. There are the
P-twists PYi

:= POYi
∈ Aut(D(Yi)) whose Fourier–Mukai kernels we denote by Qi.

These induce auto-equivalences P ′
Yi

:= FMQ′
i
∈ Aut(D(Y1 × · · · × Yk)), where

Q′
i=OΔY1

� · · ·�Qi� · · ·�OΔYk
∈D

(
(Y1×Y1)×· · ·× (Yi×Yi)×· · ·× (Yk ×Yk)

)
.

We have

P ′
Yi
(F1 � · · ·� Fk) = F1 � · · ·� PYi

(Fi)� · · ·� Fk .(17)

In the following we will use the identification D(X) ∼= DG(X
′) of the derived cate-

gory of X with the derived category of G-linearized coherent sheaves on the cover
X ′ = Y1 × · · · × Yk; see, e.g., [BKR01, Sect. 4] or [KS15a] for details. One can
check that the Qi are 〈fi〉-linearizable, hence the Q′

i are G-linearizable. It follows
that the auto-equivalences P ′

Yi
descend to auto-equivalences P̌Yi

∈ Aut(DG(X
′)) ∼=

Aut(D(X)); see [KS15a, Thm. 1.1]. One might expect that the composition of the
P̌Yi

equals PX but this is not the case.
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Proposition 6.9. There is an injective group homomorphism Z⊕k+2 ↪→ Aut(D(X))
given by

ek+1 �→ PX , ek+2 �→ [1], ei �→ P̌Yi
for i = 1, . . . , k.

Proof. Under the equivalence D(X) ∼= DG(X
′), the structure sheaf OX ∈ D(X)

corresponds to OX′ = OY1
� · · ·�OYk

equipped with the natural linearization. By
(17) and Proposition 6.7(1), we get

P̌Yi
(OX) ∼= OY1

� · · ·� (OYi
[−2n])� · · ·�OYk

∼= OX [−2n] .

Hence, by Proposition 6.7(iii), the P̌Yi
commute with PX . By a similar argument,

one can see that the P̌i commute with one another. The shift functor [1] commutes
with every auto-equivalence of the triangulated category D(X). In summary, we
have shown by now that the homomorphism Z⊕k+2 → Aut(D(X)) is well-defined.

For the injectivity, let us fix for every i = 1, . . . , n a G-linearizable Fi ∈ O⊥
Yi
.

For example, let Z1 and Z2 in Lemma 6.8 be two different 〈fi〉-orbits in Yi. Let
a1, . . . , ak, b, c ∈ Z, and set Ψ := P̌ a1

Y1
◦ · · · ◦ P̌ ak

Yk
◦ P b

X [c]. By plugging various box-
products of the OYi

and Fi into Ψ, we can show that Ψ ∼= id implies 0 = a1 = a2 =
· · · = ak = b = c; this is very similar to computations done in [Add16, Sect. 1.4] or
the proof of [KS15b, Prop. 3.18]. �

Remark 6.10. In the known examples, the Yi are generalized Kummer varieties;
compare section 3.4. In these cases, there are many more P-objects in D(Yi) which
induce further auto-equivalences on X; see [Kru15, Sect. 6].

Corollary 6.11. Let X be a variety with Pn[4]-unit for n ≥ 3. Then, there is an
embedding Z4 ⊂ Aut(D(X)).

Proof. By Theorem 5.8, we are in the situation of the above proposition. �

6.7. Varieties with Pn[k]-units as moduli spaces. All the examples of vari-
eties with Pn[k]-units presented in this article are constructed out of examples of
hyperkähler manifolds with special auto-equivalences, usually with the property
that the quotients are strict Enriques varieties. Then the varieties with Pn[k]-units
are constructed as intermediate quotients between the product of the hyperkähler
manifolds and the product of the quotients.

It would be very interesting to find ways to construct varieties X with Pn[k]-
units directly. In the case k = 4, by Proposition 5.3, the universal cover of such an
X decomposes into two hyperkähler manifolds. Hence, one could hope to find in
this way new examples of Enriques or even hyperkähler varieties.

For example, one could try to construct varieties with Pn[k] units as moduli
spaces of sheaves (or objects) on varieties with trivial canonical bundle (or Calabi–
Yau categories) of dimension k. Indeed, all of the examples that we found in this
paper can be realized as moduli spaces.

For example, let A, B be abelian surfaces together with automorphisms a ∈
Aut(A) and b ∈ Aut(B). We set Y := K2A, Z := K2B, f := K2a, g := K2b,
and assume that Y/〈f〉 and Z/〈g〉 are strict Enriques varieties of index 3. This
implies that X := (Y × Z)/〈f × g〉 has a P2[4]-unit; see Remark 4.6. As Y = K2A
and Z = K2B are moduli spaces of sheaves on A and B, respectively, the product
Y × Z is a moduli space of sheaves on A × B. We denote the universal family by
F ∈ Coh(A×B×Y ×Z). This descends to a sheaf F̌ ∈ Coh((A×B)/〈a× b〉×X)
which is flat over X with pairwise nonisomorphic fibers. One can deduce this from
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the fact that F is 〈a × b × f × g〉-linearizable; compare [KS15a, Sect. 3]. Hence,
we can consider X as a moduli space of sheaves on (A×B)/〈a× b〉 with universal
family F̌ .
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