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MODIFIED SCATTERING FOR THE QUADRATIC
NONLINEAR KLEIN-GORDON EQUATION
IN TWO DIMENSIONS

SATOSHI MASAKI AND JUN-ICHI SEGATA

ABSTRACT. In this paper, we consider the long time behavior of the solution to
the quadratic nonlinear Klein—Gordon equation (NLKG) in two space dimen-
sions: (O + 1)u = Aulu, t € R, z € R2, where 0 = 92 — A is d’Alembertian.
For a given asymptotic profile uap, we construct a solution u to (NLKG) which
converges to uap as t — oo. Here the asymptotic profile uap is given by the
leading term of the solution to the linear Klein—Gordon equation with a log-
arithmic phase correction. Construction of a suitable approximate solution is
based on Fourier series expansion of the nonlinearity.

1. INTRODUCTION

We consider the final state problem for the quadratic nonlinear Klein—Gordon
equation in two space dimensions:

- 2
(1.1) { O+ 1Du = Mulu teR, xR,

U— Uyp — 0 in L? ast— +oo,
where 0 = 0?2 — A is d’Alembertian, u : R x R? — R is an unknown function,
Uap : R X R? — R is a given function, and ) is a non-zero real constant.
There are many known results on the scattering for the nonlinear Klein—-Gordon
equation

(1.2) (O+ Vu = Mu|Ptu, teR, z € R,

where p > 1 and A € R\{0}. Here, we focus on the results on scattering for small
data. For the scattering results for large data, see [IL2L[7,26] for instance. For the
case po(n) < p < 1+4/(n—2) with po(n) = (n+ 2+ vn? + 12n + 4)/(2n), small
data scattering for (L2 was studied by many authors; see [2829[32] for instance.
As for the case p < po(n), Klainerman [I7] and Shatah [30] independently proved
the global existence of a solution to the Klein-Gordon equation with the quadratic
nonlinearity for n = 3 by using the vector field approach and the normal form,
respectively. By using the vector field approach, Georgiev and Lecente [5] obtained
pointwise decay estimates for solutions to ([2) for p > 1 + 2/n with n = 1,2,3.
Hayashi and Naumkin have shown in [I1] that the nonlinear interaction in (L2) is a
short range type for p > 1+ 2/n with n = 1,2; i.e., solutions to (L2) scatter to the
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solution to the linear Klein—Gordon equation if p > 1 + 2/n. On the other hand,
Glassey [§] and Matsumura [23] proved that the nonlinear interaction in (I2)) is a
long range type for 1 < p < 14 2/n and n > 2; namely, solutions to (L2 do not
scatter to the solution to the linear Klein-Gordon equation if 1 < p < 1+2/n. A
similar result was obtained in the case where p = 3 and n = 1 by Georgiev and
Yordanov [6]. With these results, we see that the exponent p = 1+ 2/n is the
borderline between the short range and long range scattering theories.

We briefly explain why the exponent p = 1 + 2/n appears as the borderline.
Roughly speaking, the nonlinearity is short range if and only if the L? norm of
the nonlinear term is integrable in ¢ € [1,00). Since the pointwise decay of the
solution to the linear Klein-Gordon equation is O(t~"/2) as t — oo, the L? norm of
the nonlinear term |u[P~'u has the rate O(t~™(P=1)/2). Then, we observe that the
nonlinearity is short range if and only if the integral | 100 t=7P=1)/24t is finite. The
condition is nothing but p > 1 + 2/n. The argument also suggests that solutions
of the nonlinear equation (L) with p < 1+ 2/n may have an asymptotic behavior
different from a solution of the linear Klein-Gordon equation. Thus, the threshold
isp=1+2/n.

For the Klein—Gordon equation with the cubic nonlinearity in one dimension,
Georgiev and Yordanov [6] studied the pointwise decay of a solution to the initial
value problem. Delort [3] obtained an asymptotic profile of a global solution to
the equation corresponding to the small initial data with compact support (see also
Lindblad and Soffer [19] for an alternative proof). The compact support assumption
in [3] was later removed by Hayashi and Naumkin in [9]. We also note that global
existence and the asymptotic behavior of a solution to the Klein—Gordon equation
with the cubic quasi-linear nonlinearity is studied by Moriyama [25], Katayama [14],
and Sunagawa [33] in one space dimension. Concerning the Klein-Gordon equation
with the quadratic nonlinearity in two dimensions, Ozawa, Tsutaya, and Tsutsumi
[27] proved a global existence result and characterized the asymptotic behavior of a
small solution to (L2) with a smooth, quadratic, semi-linear nonlinearity; i.e., the
nonlinear term depends on u, dyu, Vu. Delort, Fang, and Xue [4] extended Ozawa-
Tsutaya-Tsutsumi’s result to the case where the nonlinear term is quasi-linear. See
also Kawahara and Sunagawa [16] and Katayama, Ozawa, and Sunagawa [I5] for
related works.

In this paper we consider the scattering problem for (L2]) with the critical nonlin-
earity |u|u in two space dimensions. Especially, we consider the final state problem:
For a given asymptotic profile u,p, we construct a solution to (1)) which converges
to the given asymptotic profile as ¢ — oo. Notice that the critical nonlinearity |u|u
in two space dimensions was out of the scope of previous works due to the lack of
smoothness of the nonlinear term.

Let us introduce the asymptotic profile u,, which we work with. To this end, we
first recall that the leading term of a solution to the linear Klein—Gordon equation

(O+1)v=0 tecR, zcR?
U(O,I) = QSO(I)? 8tv(07x) = ¢1(I), HARS RQa

is given by

t g <ey (8, @) Pr(p) cos ((u) ™) + 67 Lgjgycry (6, 2)Q1 (1) sin ()~ 't)
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where u = x/4/t? — |z|?, 1q(t, x) is the characteristic function supported on 2 C
R'*2 and
(1.3) Pi(n) = —(u)*Tmgo(p) — (1) Re i (p),
(1.4) Qi(r) = (W Redo() — () Im oy (p);
see [13] for instance. For given final state (¢g, ¢1), we define the asymptotic profile
Uap DY
(1.5) Uap(t,2) = 7 Ly <y (t,2) Pr(p) cos ((u) ™ + U (p) log t)
T L 1<y Q1 () sin ((u) ™' + W () log )
where the phase correction term is given by

4

(1.6) W) = = 1) Do) + ilp)~ Ba(w)]

The final state (¢o, ¢1) is taken from the function space Y defined by
Y = {(¢o,¢1) € S'(R) x S'(R); [|(do, 1) ||y < o0},
(0, &1) [y I¢oll 2 + llzoll s + 2% ol s
il + lzillaz + l|lz° 61 .

The main result in this paper is as follows.

Theorem 1.1. Let (¢g,¢1) € Y. For 1/2 < d < 1, there exist a sufficiently large
number T > e and a sufficiently small number € > 0 such that if ||(do, ¢1)|ly < &,
then there exists a unique solution u(t) for the equation [II)) satisfying

u € C([T, 00); L),

(1.7) sup 14|t — tap|| Lo ((¢,00);12) < 00,
t>T

where the asymptotic profile uap is defined by (LH).

Remark 1.2. Concerning the final state problem for (L2 with the cubic nonlin-
earity in one space dimension, Hayashi and Naumkin [I0] constructed modified
wave operators for (I2) for small final data. Furthermore, Lindblad and Soffer [1§]
showed existence of modified wave operators for ([2)) for large final data in the case
where A < 0.

Remark 1.3. The same result holds true for equations with a general quadratic
nonlinearity F(u) : R — R satisfying F(Au) = A2F(u) for all A > 0 and u € R. See
Remark 2] below for the details.

The rest of the paper is organized as follows. Section 2 is devoted to the ex-
hibition of an outline for the proof of Theorem [[LT1 The proof of Theorem [.1] is
based on the contraction principle via the integral equation of Yang-Feldman type
associated with () around a suitable approximate solution. The crucial part of
the proof is construction of the suitable approximate solution. We summarize how
to do this in this section. In Section 3, we solve an abstract final value problem
around an approximate solution. Then, in Section 4, we show that the approximate
solution given in Section 2 satisfies the assumptions of the final value problem in
Section 3, and we complete the proof of Theorem [[.11



8158 S. MASAKI AND J. SEGATA

2. OUTLINE OF THE PROOF OF THEOREM [

In this section, we give an outline of the proof of Theorem [l For T' > 0, we
define the function spaces X1 by

Xr = {weC([T,00); L7); |w]x, < oo},

d
lwllx, = sggt (||w||L§c((t7oo);H;/2) + ||w||L4((t,oo);L§))a

=

where 1/2 < d < 1. Put N(u) = AMu|u. Let A be a function satisfying

(2.1) [A@®) |z < nt™",
(2.2) IO+ 1)A#) = N(A) (B2 <t~

We will prove in Section 3 that once we find such a function A, there exists a unique
solution u to the equation (1) satisfying u — A € Xp. To prove this assertion, we
employ the Strichartz estimate (Lemma [3.2)) and the contraction argument. Hence,
it suffices to construct a function A satisfying the conditions (2] and ([Z2)) for a
given final state (¢o, ¢1) € Y. It will turn out that A = w,, does not work well,
and so we need further modification.

We now explain how to construct the function A = A(t, x) satisfying the condi-
tions (2.I)) and ([2.2). The conclusion is that the choice A := uap + vap works, where
Uap 18 the first approxzimation given by (LH) and v,y is the second approzimation
which is of the form

(2.3) Vap = t7 1{‘I|<t}ZP ) cos (n{p) ="t + nW¥(u)logt)

+2 L)<t} Z Qn (1) sin (n{u) 't + n¥(p) logt) .
n=2

Here the phase function ¥ is the same as (@), and the choice of P, and Q,, will
be specified later. Remark that v,,(t) = O(¢t7!) in L2. Toward the conclusion, we
will observe (i) why the second approximation v,y is required, and (ii) what is the
appropriate choice of P, and @),,, by a somewhat heuristic argument. Hereafter, we
consider the case |z| < ¢ only because u,, and v, are identically zero in the region
|z| > t.

We first focus on the nonlinear part N(uap) = A|tap|Uap. Since N(u) = A|u|u
is not polynomial in (u,u), it becomes difficult to pick up a resonant part from
N(uap). Taking a hint from our previous paper [22], we use the Fourier series
expansion of N (u,p) to decompose N (u,p,) into the resonant part and the rest into
the non-resonant part. This decomposition is done as follows. We rewrite u,p, as

w T aj <y VPL(R)? + Qu(p)2cos(a — B) it Pr(p)? + Qi () # 0,
o if P (i) + Q1 (1) =0,

where o = ()~ + ¥(u)logt and S € (0,27] is given by

cosfB = Aup) sin f = @)
24 b= VPI()2 + Q1(p)?’ = VP ()2 + Q1(w)?
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Then, we have

(2.5)
N(uap) = M2(Pi(p)* + Q1(1)*)er cos(a — B)
+AE2(Pu()? + Qu(w)*) Y en cos(na — nfp)
n>2
= S NTVPGT QIR (Puk) cosa+ Qa(u)sino)
A2 (P () + Q1(p)?) Z ¢ cos(na — nf)

n>2

=i Ni(tap) + Nox(tap),
where ¢, are the Fourier coefficients for the function | cos | cos 6:

8 sin(Zr)
1 2 -———2 = ifnisodd,
Cn:_/ | cos @] cos 0 cos nfdf = mn(n? —4) nrEe
0

T .
0 if n is even.

This kind of technique was also used in Sunagawa [33] to pick up the resonant
term from the cubic nonlinearity in one space dimension. In that case the Fourier
series for N(u,p) consists of four terms. We would emphasize that, in our setting,
the Fourier series consists of infinitely many terms, so we need to take care of
the convergence of the Fourier series, which seems a new ingredient. Fortunately,
it will turn out that the nonlinearity |u|u has enough smoothness to ensure the
convergence of the Fourier series for |ulu. We mention that a similar but slightly
different expansion of a nonlinearity into an infinite Fourier series is used by the
first author and Miyazaki [2I] in the context of nonlinear Schrédinger equations.

Since both the resonant and non-resonant parts are O(t~1) in L2, we need to
cancel out those terms by the linear part; otherwise (2.2)) fails. Thanks to the phase
correction ¥, we have the desired cancellation of the resonant part. Namely, we
have

(O 4 Dttap = Ny (uap) + Ot %(logt)?), in L?

as t — 0o; see Lemma for the details. We then add a second approzimation vay,
of u, given in (Z3)), in order to cancel out the non-resonant term Ny, (u,p). This is
the reason why we need the second approximation v,p.

To obtain the desired cancellation, we will choose suitable P, and @,. More
precisely, we choose them so that the leading term of the nth term of (O + 1)vay,
and the nth term of the Fourier expansion of Ny, (uap) coincide. By a computation,
we have

O+ Vv = t72 Z(l —n?) P, (k) cos (n{p) 't +n¥(u)logt)

+672Y (1 =n?)Qu()sin (n(p) "t + n¥ () logt)

n=2

+ Ot %(log t)?), in L?
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as t — oo; see Lemma 3] for the details. Hence, we obtain the specific choice

(2.6)

8sin(27) 5 5 o
Py(p) = d Tn(nz = 1)2(n2 — 4)/\(P1(u) + Q1(p)?) cos(nB) if n is odd,
0 if n is even,
(2.7)
8sin(27) 9 o . o
i) = | T 1)2(712 vy A(PL(p)” + Q1(p)) sin(nB) if n is odd,
0 if n is even.

With this choice, the leading term of the nth term of (O + 1)va, and the nth term
of the Fourier expansion for Ny, (uap) successfully cancel each other out. Further,
it will turn out in Section 4 that the error term can be handled thanks to fast decay
of P, and Q,, in n. Remark that the coefficients of P,, and @Q,, are of order O(|n|~?)
as |n| — oco. The decay rate of the Fourier coefficients reflects the smoothness of
the nonlinearity Aluju. Thus, we see that A = ua.p + vap satisfies the conditions
2.I) and @.2).

This kind of approximation was introduced in Hérmander [I3] for the Klein—
Gordon equation with polynomial nonlinearity in (u,u). See also [24,[31] for the
nonlinear Schrédinger equation with polynomial nonlinearity in (u,@).

Remark 2.1. Let us consider a generalization of Theorem [[LI. Notice that any
real-valued quadratic nonlinearity can be expressed as the linear combination of
|ulu and u?. Indeed, if F(u) : R — R satisfies F'(A\u) = A?F(u) for any A\ > 0 and
u € R, then we see that
FO) 4 F(-1) o FO - FCD

2 2
As for the even nonlinearity u?, it is easy to pick up the resonant/non-resonant
part from w2, because the Fourier series of u3, consists of the zeroth and the sec-
ond terms only. In particular, it contains no resonant part, and so existence of the
even part does not change (the leading term of) the asymptotic profile. Thus, we
can generalize Theorem [[.] for general real-valued quadratic nonlinearity in two
dimensions. Note that the final state problem for the Klein—Gordon equation with
the nonlinearity u? in two dimensions was studied by Hayashi and Naumkin [12] by
using the normal form method. It is an interesting problem to generalize Theorem
[Tl to equations with complez-valued quadratic nonlinearities. As a related prob-
lem, we mention that Sunagawa [34] obtained the pointwise decay estimate of the
complex valued solution to the initial value problem for the one-dimensional cubic
nonlinear Klein—Gordon equation.

F(u) =

3. THE FINAL VALUE PROBLEM

In this section, we solve a Cauchy problem at infinite initial time for the equation
(1) in an abstract framework. Let A(¢,x) be a given asymptotic profile of a
solution to (LTl). We show that if A(¢,z) is well chosen, then we obtain a solution
which asymptotically behaves like A(¢,x). We will give one sufficient condition for
the choice of A(t, z).
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Let N(u) = Au|u. We introduce the error function F(t,x) by

(3.1) F:=(O+1A—-N(4).
For T > 0, we introduce the function space

Xr = {w e C([T,00); L}); [[w]|x, < o0},
where

|lwllx, = f;gtd(||w||Lm((t7oo);H;/2) + [Jwll a((t,00)524))

with 1/2 < d < 1. For p > 0 and T > 0, we define

Zr(p) = {w € C(T,00): 12); [[wllxy < p}.
The function space Xr is a Banach space with the norm || - ||x,., and Xr(p) is a
complete metric space with the || - || x,.-metric.

Proposition 3.1. Let d be a constant such that 1/2 < d < 1. Then there exist a
sufficiently large T > 0 and a sufficiently small n > 0 such that if A(t,x) satisfies

(3.2) [A@) L <t~
(3.3) [F@)e2 <nt=t77,
where F(t,x) is given by B.1), then there exists a unique solution u for the equation
(1) satisfying
u € C([T7 0); Li),
(3.4) sup td(Hu — AHLOO((t,oo);H;/Z) + lu— AHL“((t,co);L‘;)) < 00.

=

To prove Proposition Bl we use the following inhomogeneous Strichartz esti-
mates associated with the Klein—-Gordon equation. Let

(3.5) Glgl(t) := /00 sin((t — 7)v1 — A)(1 — A)~Y2g(7)dr.
t
Lemma 3.2. Let2< g<oo and 1/p+1/q=1/2. Then we have
Gz rooncsy < O = A2 g]
1G9l e (j7,00),22) < CII(1— A)fl/qg||Lf’([T7oo)7Lg’)v

1G9l e ((7,00),9) Cll(1 - A)_l/q9||L}([T,oo),Lg)~

Proof of Lemma B2l The above inequalities follow from the LP-LY estimate for the
solution to the Klein—-Gordon equation by [20] and the duality argument by [35].
Since the proof is now standard, we omit the details. O

Proof of Proposition BIl We put v = u — A. Then the equation (II)) is equivalent
to

(3.6) (O+1)v = N(v+ A) — N(A) — F,

where F' is defined by (B). The associate integral equation to the equation (B.6)
is

(3.7) v=G[{N@w+ A)—N(4)} - F],

where G is given by ([3.3]). It suffices to show the existence of a unique solution v to
the equation (B7) in X for sufficiently large T' > 0 and sufficiently small 5 > 0.

N
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We prove this assertion by the contraction argument. Define the nonlinear operator
P by

Sv:=G{N(wv+ A) — N(A)} — F]
for v € )?T(p). We show that for any p > 0, ® is a contraction map on )N(T(p) if
T > 0 is sufficiently large and n > 0 is sufficiently small. Let p > 0 be arbitrary,

and let T, n > 0, which will be determined below. Let v € )N(T(p) and t > T. By
the assumptions and Lemma [3.2] we see that

”(va)(t)HL"O((t,oo);Hip) + H(I)U||L4((t,oo);L§,)
<0(||v2||L4/3((t,oo);Li/3) + ||(1 - A)71/4A’U”L1((t700);[/i)
(1= A) YA L1 (t00)s2))

) 1/2 )
<l ([ @Igar) [T 1A o)z ar

+ [CIrE
t
o 1/2 00 oS
<C{Pt_d</ pzT‘QddT> +/ ﬂT_lpT_ddT+/ m—l—ddT}

<Ot~ p*t 12 + pn + ).
Therefore we obtain
(3.8) 1®v]lxz < Ca(pPPT~ 42 + py + ).
In the same way as above, for vy,vs € )?T(p), we can show that
[@v1 — Pva 7
(3.9) <Co(([[v1llxz + o2l )T~ ) or = w2 xy
Co(pT~ 2 4 ) oy — va x-

We note that for p > 0, there exists a sufficiently large T' > 0 and a sufficiently
small 17 > 0 such that

Cr(p*T~ 2 + pn+m) < p,
1
Co(pT~ 12 4 ) < 2

since d > 1/2. From this observation, the estimates (B.8) and (B) show that
the operator @ is a contraction map on )?T(p) for sufficiently large T > 0 and
sufficiently small 7 > 0. Therefore for any p > 0, there exist 7' > 0, n > 0, and a
unique solution to the integral equation (1) in X7 (p). The uniqueness of solutions
to the equation B in Xr follows from the first inequality of the estimate (3]
for solutions v1 € X and v € Xp. Hence the equation ([B.7)) has a unique solution
in Xp. This completes the proof of Proposition [3.11 O

4. CONSTRUCTION OF A SUITABLE ASYMPTOTIC PROFILE

In this section, we complete the proof of Theorem [[LI] by showing that the as-
ymptotic profile A(¢, z) introduced in Section 2 satisfies the assumptions in Propo-

sition B.11
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Proposition 4.1. Assume that the final state (¢o, p1) satisfies (¢o, 1) € Y. Let

Uap be defined by (LX), where P1,Q1, and ¥ are given by (L3), (L), and (L0),
respectively. Let vy, be defined by (23)), where P, and Qy, are given by (26) and
ZX). Then for A = uap + vap, there exist positive constants C' such that the
inequalities

(4.1) [AB) e < CE (90, ¢1)lly (1 + [[(b0, 61)lly),
(4.2) 1@+ DAE) - N(AW®) |2

< Ct2(1ogt)?||(do, o) [y (1 + [[(¢0, 1) [13)
hold for any (¢o, 1) €Y and t > e.
To prove Proposition 1] we first calculate (O + 1)uap.

Lemma 4.2. Assume that (¢o,$1) € Y. Let uap be defined by (L5), where P,

@1, and ¥ are given by (L3), (L), and ([L6), respectively. Let Ny(uap) be given
by (Z3). Then it holds that

(4.3) (8 + uap — Nr(uap)HLi

< Ct2(logt)?[[(do, ¢1) Iy (1 + [|(¢o, d1)[I3)-
Proof of Lemma [£2]. A simple calculation shows that
(4.4) (O+ 1){t"™cos (n{u)~'t)}

= (1—n®t "cos (n{u)'t) + 2n(m — 1)t~ (u) sin (n{u)~'t)
+m(m+ 1)t~ % cos (n(u)~'t)

for m,n € Z,. In a similar way,

(O+ 1){t " sin (n{u)~'t)}
= (1—n®)t "sin (n(u)"'t) — 2n(m — 1)t~ (u) cos (n{u) ')
+m(m + 1)t~ Zsin (n(u)~'t).

We now consider a function of the form g = g(¢, ). Changing variables (s, u) =

(t,z/\/1? = [x]?),

Ohg = 0sg— s (W) 10,9 — s 1) u20,, 9,
Oorg = s A+ pT)0u g+ s~ () 111204, 9,
Ovsg = 5 N pap2du, g+ s (W) (1 + 13)0u,9-

45)  O(g(tp) = 92— s 2?1+ ud)%, g — s 2w (1 + 13)0%,9
=257 (1) 2111050, 9 — 25 (1) 112050, 9

=252 () 111 1120,4, O g

=252 (1) 110y, 9 — 2572 (1) 20y, 9.
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By using the above identities, we now calculate (04 1)u,p. To this end, we split
it into the following four pieces:

(4.6) (O+ Duap
= (@O+1){t'Pi(p)co
—(@O+1) {t ' Py(p)sin ((1) " '¢) sin (U (p) logt) }
+O+1) {t71Qu(p) st
+(O+1) {t'Qu(p
= L +L+I3+ 1.
Further, we split I into the following five pieces:
(4.7 I = (O+41){t " cos ({(u)~"t)} Pr(p)cos (¥ (k)
+t " cos ({p) ~Ht) O{Pr(p) cos (¥(p) logt)
20, {t" cos (1))} 9 { Py (1) cos (¥(n)
—20,, {t™ " cos ((u) ~'t) } Ba, {Pr() cos (¥ (p)logt)}
—20,, {til cos ((u)flt) } 0y {P1 (1) cos (¥(p) log t)}
= Ji+Ja+Js+Jy+ Js.
By (@A), we see that
(48) ()] < CEPy ().
By (@X), we have

(49) [l < Ct7ogt) {(|P()| %)) + [Pr(u)][ @ (p)])
) (1P ()19 ()| | DY ()] + [D Py ()] ®
P[PV ()] + [DPr(p)])
) (| P ()| DY () + [DPy ()| D ()]
HPUIID*T ()] + [D*Pr(u)])}

where [Df(p)| = |0, f(10)] + |0y f ()] and [D? f(p)| = |07, f(10)] + |0y, Opn f(10)| +
\8Z2f(p)|. For J;, j = 3,4,5, an elementary calculation yields

Jo= 2y sin ()
00— 1 (000 — )P0y} P (1) 05 (W (1) o )
—2t7 % cos ({p)~'t)
) {0y — )2 10y, — (1) 120, } Pr (1) cos (¥ (u) log t)
=t J31 + J32 + J33 + Jza + J35 + Jse,

()

Ji = =2t 'pysin ((u) ')
) LU 1)y, + £ s 120y, P (11) 05 (W 1) log )
= Ju + Jag,
Js = —2t"luysin ((,u)‘lt)

) At () pa a8y, + () (1 + p3) 0, Y Pr (1) cos (W () log t)
=: Js1 + Js2.
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Since J3o + Jy1 + J51 = 0 and J33 + Jyo + J52 = 0, we see that
(4.10) J3+Jy+ Js
= J31+ Jsa+ Js5 + Jse
= 2072 (u) Pr(p) W () sin ((u) ™ 't) sin (W (p) log t)
+J34 + J35 + J36.
Substituting ([@I0) into @), we obtain
(4.11) I = 2t7%(p) Py ()@ (p) sin () ~'t) sin (U (p) log t) + Riq,
where Ry = J1 + Jo + J34 + J35 + J3. Hence by () and (9],
(4.12) |Raa (¢, )|
< Ot (og X (1PL()|[% (1)1 + [ Pr(p) [ % ()] + | Pr (1))
() (1P ()12 ()| DY ()] + [DPy ()| ()]
+ P ()| D ()| + [DPy (1))
) (| P ()| DY (1)[* + [DPy (1) || DV (1)
+PL ()| D*W (1)] + [D*Pr(p)])}-

In a similar way, we have

(413) L = 272(u)Py(u)¥(u) cos (1) 1) cos (T (1) logt) + R,
(414) Iy = —22(u)Q ()W () cos () M) sin (V(0) log ) + Ry,
(4.15) I = —2t7(u)Q:1(p)¥(p)sin ((u)~'t) cos (¥(p) logt) + Ria,

where Rjs satisfies (12), and Ry3 and Ry4 satisfy (£I2)) with @ instead of P.
Substituting (@II)-I3 into (L), we obtain
(4.16)
[(O + Duap — Ne(tap)|
< |R11| + |R12‘ + |R13| + |R14‘

< Slogt)® Y {UZIT (W) + 122 (W) ()] + | Z1(w)])
Z=P,Q

() (122 ()| |9 () [| D ()| + | D Z ()9 (1)
HZ1 ()| DY (1)| + | DZ1 (1))

) (120 [DY () ? + [ DZ1 ()| DY (1)
+ Z ()| D* ()| + |D* Z1 (1)) }-

By simple calculations, we see that

(1) 1zl < (3ol + mld)])

(418)  IDZiw) < € ((Wldo()] + (121 Do(1)])
+C (161()] + (1) [ D1 (1))

(419) 1Dz < C (1ol + () Dol)] + ()| D*do (1))
+C (4™ b1 (0) | + 1D ()| + () D21 (1)1 )
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for Z = P,Q, and

(4.20)

N

C (o) +161 (1)
C (Ido(w)] + ()| Do (1))
+C (< )™ 1|¢1< )|+ 1D (),
(422) (D) < C () dolw)| + Do) + (1) D*o(1)])
+C (0721610 + (1) "M 1D1 ()| + [ Dn (1))
Plugging (E17)-@I9) and @20)-@Z2) into @IB), we have

[(B 4 Duap — Ni(uap)|
< O3 (logt)? ()

x { (14 Glbot)] + (?1Ddo(u)])” (11)%1000)] + 1)1 Ddo (1))
+ (14 ldo(un)l) (1) 1Do ()|
(L )]+ 1D w)) (sl ()] + ()% Dda (1))
# (1 162001) (D%

(4.21)  |DU(p)| <

Therefore, taking the L2 norm for the above inequality with respect to the z vari-
able, we have the estimate ([@3)). O

Next we calculate (O 4 1)v,p.

Lemma 4.3. Assume that (¢g,¢1) € Y. Let uap be defined by (IL3), where P,
Q1, and ¥ are given by (L3), (L4), and [L4), respectively. Let vy, be defined by
Z3), where P,, and Q,, are given by (Z6) and (Z7)). Furthermore, let Ny (uap) be
given by ZX). Then, we have

(4.23) (B + 1)vap — Nnr(uap)HLi
< Ct 2 (logt)?|[(do, d1) I3 (1 + [[(¢0, ¢1)II3)-

Proof of Lemma 3l In a similar way as in the proof of Lemma 2] we have

(4.24)

(O+1)vep, = t~ QZ (1—n?) ) cos (n{u) ="t +n¥(u)logt)
t_2z 1 —n?)Qn(p) sin (n{p) ™'t + n¥(u)logt)

+ Z Ru(t, p),
n=2
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where R, (n > 2) satisfies the inequalities

(4.25)  [Ra(t, p)|
< Ct3(logt)?

x> A1 Za(w) (W) + 2l Za (W12 ()] + | Zn (1))

Z=P,Q

+n ()| Zn (1))

+(1)? (n®| Zo ()| () [| D ()] + 12| D Zy, (12) | |9 (1)
+n|Zn (W[ DY ()| + |DZy (1))

+(u)* (n? Zn ()| DY ()]* + n|DZy, (1) || DE (1)

0| Z ()| D> ()| + | D Zy (1)) }-

Then by (Z35) and [@24), we find that

(4.26) (B + D)vap = Noe (ttap) | 2 < Z [Bn ()] 22

n=2

Differentiating ([24]), we see that 5 satisfies

|DPi(p )\+\DQ1( )\
VP1(p)? + Q1 (p)?

427) DB < ¢

(428) |D*B(w)] < C

D2 P ()| +D* @), PP + D@1 ()]

VPL(1)? + Q1 (p)? Pi(p)? 4+ Q1(p)?
Plugging (@I7)-(@T19) and (Z7)-E28)) into ([Z6]) and (Z7T), we have

(429)  1Zu(wl < Cn7® () do(u) 2 + ()10 () 2)
(430)  IDZu()] < Cn o] ((m*1do()] + 1) Do (w) )

+On~ ()M ()] (%11 ()] + () 1DS1 ()]

(4.31)
|D?Zy ()]

< Cnf*{(éow + () 1Ddo()]) ((1)%1do()] + ()| Do)
bl D000
0 (101001 + 1D 1) (60110 + (0?1010
) 10100 D ()1}

8167
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for Z = P, Q. Substituting (£.20)-@.22]) and (£29)-(@31) into (£25), we obtain

| R (t, )|
< COn7?t 2 (logt)*(u)?

e (1 o) (0210001 + (0210
(L (ldoln) ) ) o o >|< V4|23 (1)
+ (1411 1)” (1d160)] + (21D (1))
+ (U 0D 1 (1] D610 .

Therefore taking the L? norm for R,, with respect to the = variable, we have that

(4.32)  [Ra(®)]lr2 < Cn7?t™2(logt)?[[ (b0, d1)II5-(1 + [[ (b0, d1)[I5)-
The inequalities [@26]) and [@32)) yield that
(B + Dvap — No(ap) | 2

< Ct2(ogt)* Y n?|(do, d1)I3-(1+ [[(o, d1) 5

n=2
< Ct2(logt)?|[(do, d) I3 (1 + [[(d0, 61)[15)-
This completes the proof of Lemma 3] O

Proof of Proposition [l The inequality ([@1l) follows from the definition of A im-
mediately. To show (£2]), we first confirm that addition by v,, does not change the
main part of the nonlinear part. However, it is obvious because va, decays faster
than u,p in time. Indeed, it can be observed by the elementary inequality

(4.33) [N (tap + Vap) = N (uap) | 22
< Cllluapllzge + llvapllzee )l vap 22
< Ot72||(¢o, o0)[I5 (1 + [I(¢o, 61) v )-
By Lemma [£2] (£3]), Lemma [#23) and [@33), we see that
(B +1)A() = N(A()) | 2
< B+ Dvap = Ne(uap) |22 + [[(E + 1)vap — Nur(uap) |22
+ || N (ttap + vap) — N(uap)HLg
< Ot 2 (logt)?|[(do, 1)lly (1 + [I(¢0, 61)[15)-
Hence, we have the inequality (£2)). This completes the proof of Proposition E1l
O

Proof of Theorem [IL1l By Proposition 1] we can apply Proposition B.1] for A =
Uap + Vap- Then there exists a solution u to () satisfying (3.4]). Hence
flu — uap”Li < lu = uap — UapHLi + ||Uap||Lg
< ctitott!
< o,
where 1/2 < d < 1. This completes the proof of Theorem [[1] O
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