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EQUIVARIANT DIFFERENTIAL COHOMOLOGY

ANDREAS KÜBEL AND ANDREAS THOM

Abstract. The construction of characteristic classes via the curvature form
of a connection is one motivation for the refinement of integral cohomology by
de facto cocycles, known as differential cohomology. We will discuss the analog
in the case of a group action on the manifold: The definition of equivariant
characteristic forms in the Cartan model due to Nicole Berline and Michèle
Vergne motivates a refinement of equivariant integral cohomology by all Cartan
cocycles. In view of this, we will also review previous definitions critically, in
particular the one given in work of Kiyonori Gomi.
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1. Introduction

The interplay between geometry and topology is a widely occurring theme in
modern mathematics, whose most elementary appearance is the formula of Hopf’s
Umlaufsatz: Let c : [0, a] → R2 be a closed smooth curve in the plane. Then the
winding number of the curve is given by the integral over the curvature:

nc = 1
2π

∫ a

0
κ(t)‖c′(t)‖dt.

This result is surprising: The quantity on the left-hand side is an integer and purely
topological; vividly speaking this means: it does not depend on small alterations of
the curve. Whereas, on the right-hand side, one integrates a real-valued function,
which does depend on the geometry: how long the curve is and how strongly it is
curved.
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A first generalization of the Umlaufsatz is known as the Gauss-Bonnet theorem,
which states that for any compact surface M of genus g in R3,

2(g − 1) = 1
2π

∫
M

κ,

where now κ denotes the Gaussian curvature of the surface.
The generalizations of these statements by characteristic classes are based on

de Rham cohomology: The differential forms on a smooth manifold form a chain
complex, which depends on the geometry of the space, but the cohomology of
this chain complex is isomorphic to any real cohomology theory, e.g., to singular
cohomology with real coefficients. This means that any real cohomology class, a
topological object, can be represented by a closed differential form, a geometric
object.

In these terms, the left-hand side of the equations above will be generalized by
the image of an integral cohomology class in real cohomology; the curvature on
the right-hand side will be replaced by a closed differential form (depending on the
curvature), and the integral will be expressed by taking the cohomology class of
this form.

In general, characteristic classes associate cohomology classes to (isomorphism
classes of) vector bundles. For smooth bundles, there are two well-known proce-
dures to construct them, one which applies the geometric structure and one which
uses topology only:

The Chern-Weil homomorphism starts with a connection on the bundle and eval-
uates an invariant symmetric polynomial on the associated curvature form, which
leads to a closed differential form, the characteristic form. As the difference of
the characteristic forms of two connections is an exact form – the exterior deriva-
tive of the transgression form – one gets a class in de Rham cohomology which is
independent of the chosen connection and is called the characteristic class of the
bundle.

On the other hand, one may also obtain these classes by pulling back universal
characteristic classes via the classifying map of the bundle.

Both constructions have their own strengths: The characteristic form contains
geometric data, while the class is purely topological. The class itself actually is not
an element in real, but in integral, cohomology, where algebraic torsion may deliver
finer information which cannot be reflected by the characteristic form, as there is
no algebraic torsion over the field of real or complex numbers.

To use both – the geometric information of the characteristic form and its trans-
gression and the algebraic torsion information from integral cohomology in one
object – one defines differential cohomology and differentially refined characteristic
classes. This was done first by Jeff Cheeger and James Simons in [11]. The differ-
ential cohomology theory extends integral cohomology by closed differential forms.
A notable result is that while the classical first Chern class classifies complex line
bundles up to isomorphism, the first differential Chern class classifies complex line
bundles with connection up to isomorphism.

From this starting point there are various ideas of differential refinements of co-
homology theories: Besides the differential characters of Cheeger and Simons, there
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is an isomorphic model by smooth Deligne cohomology (see [4, 6]). On the other
hand, there are various models for differential K-theory (see [8] for a survey, which
includes a discussion of the literature). A general framework for these differential
refinements is given in [9] and [7].

We want to go back to the starting point and generalize the idea of the differ-
ential refinement to an equivariant setting; i.e., we have a Lie group G acting on a
smooth manifold M and ask for a theory which enables differential refinements of
equivariant characteristic classes of G-equivariant vector bundles over M .

To do so, we need a differential form model for equivariant cohomology which is
capable of receiving a homomorphism from integral cohomology. Moreover, there
should be two constructions of real/complex equivariant characteristic classes, one
via equivariant characteristic forms and one via integral equivariant characteristic
classes, which should coincide under the homomorphism between the cohomology
theories.

The construction of the differential refinement, which we will give, is an equivari-
ant version of smooth Deligne cohomology, but to stress that it fits into the picture
of differential refinements, we will use the term “equivariant differential cohomol-
ogy”, even if we will not discuss equivariant differential refinements in general.

1.1. Equivariant cohomology and simplicial manifolds. Defining equivari-
ant cohomology H∗

G(M) is a simple business using two expected properties of this
functor: homotopy invariance and that, for free actions, the equivariant cohomol-
ogy should coincide with the cohomology of the quotient. Namely, let EG be a
contractible space with a free G-action. Then the diagonal action of G on EG×M
is free and the map EG × M → {∗} × M is a homotopy equivalence. Hence, we
have described the well-known Borel construction, which in formulas is

H∗
G(M) = H∗

G({∗} ×M) = H∗
G(EG×M) = H∗(EG×G M),

for any cohomology theory and any coefficient group, e.g., singular cohomology
with values in Z,R, or C. Here EG×G M is the quotient of the diagonal G-action
on EG×M .

As short and easy as this construction is, it creates a task for us: EG is even in
simple cases not a finite-dimensional manifold; hence we have no de Rham coho-
mology. But EG is something similar to a manifold: namely there is a simplicial
manifold ([12, 14]), i.e., a simplicial set such that the set of p-simplices forms a
smooth manifold for each p and all face and degeneracy maps are smooth, and the
geometric realization of this simplicial manifold is EG ×G M . This will be intro-
duced in Section 2.1, and we will explain how one defines (simplicial) differential
forms on a simplicial manifold. They lead to a complex which is bi-graded by the
form degree and the simplicial degree. The cohomology of this double complex cal-
culates equivariant complex cohomology. In fact, simplicial differential forms also
form a (graded) simplicial sheaf Ω•,∗

C
.

Using the language of simplicial sheaf cohomology, the de Rham homomorphism
is induced by the inclusion of the locally constant simplicial sheaf Z → Ω•,∗

C
as

locally constant functions.
In Section 2.2, we will introduce the reader to a more famous model of equivariant

cohomology using differential forms, known as the Cartan model. This is given
by the so-called equivariant differential forms, i.e., equivariant polynomial maps
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g → Ω∗(M), where the differential dC on (C[g] ⊗ Ω∗(M))G is given by

(dCω)(X) = d(ω(X)) + ιX�(ω(X)),

i.e., the sum of the exterior differential and the contraction with the fundamental
vector field of X, and hence increases the grading given through

twice the polynomial degree + the differential form degree

by one.
The Cartan model has the advantage that its cochain complex is substantially

slimmer than the double complex Ω•,∗ defined above, but it is not directly capable
of receiving a homomorphism from integral cohomology. Therefore we apply ideas
of [16] to compare the different models of equivariant cohomology. This compari-
son will enable our construction of a differential refinement of equivariant integral
cohomology.

1.2. Equivariant characteristic classes and forms. Let G act on the vector
bundle E → M ; i.e., we have an action on the total space and the base space
such that the projection is equivariant. Via the Borel construction, one can de-
fine equivariant characteristic classes easily: take the usual characteristic classes of
EG×G E → EG×G M !

There is also a characteristic form construction (see [1]) which does not only
depend on the curvature but also uses the moment map μ∇ of the connection ∇.
This is a map from the Lie algebra of the acting group to the endomorphisms of the
vector bundle (see Definition 4.1 for details). In this way, one obtains an equivariant
characteristic form which is a closed equivariant differential form, i.e., an element
in the Cartan complex.

Both paths lead to the same class in equivariant complex Borel cohomology. We
discuss this in [21], since for this compatibility, although generally assumed to hold,
there exists only a proof for special cases (compare [2]) in the literature.

1.3. Equivariant differential cohomology. After we have achieved this under-
standing of equivariant characteristic forms, we can review previous definitions
critically to obtain a more satisfactory one.

There is a definition of equivariant smooth Deligne cohomology Ĥ∗
G(M,Z) in [18],

and Kiyonori Gomi shows there that Ĥ2
G(M,Z) classifies G-equivariant line bundles

with connection. We will show that his definition fits, for actions of compact groups,
into a differential cohomology hexagon (Theorem 3.11) and thus can be interpreted
as a model for equivariant differential cohomology. But this definition neglects
the secondary information of the moment map and is, thus, only satisfactory in
the case of finite groups, where there is no moment and in low degrees, where the
moment map does not play a role. There are also other, less elaborated, definitions
(see Remark 3.18), which are all unsatisfactory from our insight into characteristic
forms.

Therefore, in Section 3.2, we define (full) equivariant differential cohomology
Ĥ∗

G(M,Z) (using a mapping cone construction similar to the non-equivariant case
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in [6]) and show (see Theorem 3.4) that for any compact Lie group G, one has the
commutative diagram

Ωn−1
G (M)�(d + ι)Ωn−2

G (M) Ωn
G(M)cl

Hn−1
G (M,C) Ĥn

G(M,Z) Hn
G(M,C)

Hn−1
G (M,C/Z) Hn

G(M,Z)

←

→
a

← →
d+ι

←

→← →

←

→

← →R

←

�
I

←↩
→

← →
−β

← →

where the line along the top, the one along the bottom, and the diagonals are exact.
In the case of the trivial group one obtains the classical differential cohomology.

In degree up to two, our definition coincides with the one of Gomi. In higher
degrees one has additional geometric data; e.g., in the case of the conjugation
action of S3 = SU(2) on itself, as discussed in Section 5.2, one has Ĥ4

S3(S3,Z) =
H3

S3(S3,C/Z) ⊕H4
S3(S3,Z) = C/Z⊕ Z, while we have a short exact sequence

0 → Ω1(S3)S
1

�
dC∞(S3)S

1 → Ĥ4
S3(S3,Z) → Ĥ4

S3(S3,Z) → 0.

Hence we have additional transgression data.
From the hexagon, one concludes that equivariant differential cohomology is the

right group in which to define equivariant differential characteristic classes, since
they can refine both the equivariant integral characteristic class and the equivariant
characteristic form. The details of these constructions are worked out in Section 4.

2. Models for equivariant cohomology

Let M be a smooth manifold acted on from the left by a Lie group G. To
define equivariant cohomology one uses two properties which one expects from such
a theory: it should be homotopy invariant, and for free actions, the equivariant
cohomology should be the cohomology of the quotient. Recall that the total space
of the classifying bundle EG is a contractible topological space with free G-action.
Hence EG×M has the homotopy type of M and the diagonal action is free. Hence
one defines

H∗
G(M) := H∗(EG×G M),

where EG ×G M is the quotient of EG × M by the diagonal action. We are
interested in differential form models for equivariant cohomology, but in general
EG is not a finite-dimensional manifold; hence we cannot use the usual de Rham
cohomology. But there is a model for EG which consists of a finite-dimensional
manifold.

2.1. Simplicial manifolds and differential forms. The model of EG×GM we
are going to use is given by a simplicial manifold.

Definition 2.1 (See, e.g., [14, p. 89]). A simplicial manifold is a contra-variant
functor from the simplex category Δ to the category of smooth manifolds.
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Explicitly this is an N-indexed family of manifolds with smooth face and degen-
eracy maps satisfying the simplicial relations, i.e.,

∂i ◦ ∂j = ∂j−1 ◦ ∂i if i < j,

σi ◦ σj = σj+1 ◦ σi if i ≤ j,

∂i ◦ σj =

⎧⎪⎨⎪⎩
σj−1 ◦ ∂i if i < j,

id if i = j, j + 1,
σj ◦ ∂i−1 if i > j + 1.

Example 2.2. Our most important example of a simplicial manifold is the follow-
ing (compare [18, p. 316], [16, Section 3.2]):

G• ×M = {Gp ×M}p≥0,

where Gp stands for the p-fold Cartesian product of G. The face maps Gp ×M →
Gp−1 ×M are given as

∂0(g1, . . . , gp, x) = (g2, . . . , gp, x),
∂i(g1, . . . , gp, x) = (g1, . . . , gi−1, gigi+1, . . . , gp, x) for 1 ≤ i ≤ p− 1,
∂p(g1, . . . , gp, x) = (g1, . . . , gp−1, gpx),

and the degeneracy maps for i = 0, . . . , p by

σi : Gp ×M → Gp+1 ×M

(g1, . . . , gp, x) �→ (g1, . . . , gi, e, gi+1, . . . , gp, x).

These maps satisfy the simplicial relations. In particular for p = 1 the map ∂1
equals the group action, while ∂0 is the projection onto the second factor, i.e.,
onto M .

Definition 2.3 (See, e.g., [14, p. 75]). The (fat) geometric realization of a simpli-
cial manifold M• is the topological space

‖M•‖ =
⋃
p∈N

Δp ×Mp/ ∼

with the identifications

(∂it, x) ∼ (t, ∂ix) for any x ∈ Mp, t ∈ Δp−1, i = 0, . . . , n and p = 1, 2, . . . .

Example 2.4. The geometric realization of the simplicial manifold G• × M is a
model of EG×GM , and in particular if M is single point the geometric realization
of G• × pt is a model of the classifying space BG (compare [14, p. 75]).

Before giving a differential form model for equivariant cohomology, we will ex-
plain sheaves and sheaf cohomology for simplicial manifolds, as this is the technical
basis for all further constructions and definitions.

Definition 2.5 (See [12, (5.1.6)]). A simplicial sheaf on the simplicial manifold
M• is a collection of sheaves F• = {Fp}p∈N, where, for each p, Fp is a sheaf on Mp

and there are morphisms ∂̃i : ∂−1
i Fp → Fp+1 and σ̃i : σ−1

i Fp+1 → Fp satisfying
the simplicial relations as stated above.
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The simplicial sheaf cohomology is defined as the right derived functor of the
global section functor [12, Definition 5.2.2], where global sections of a simplicial
sheaf from the equalizer

ker
(
∂̃0 − ∂̃1 : F0(M0) → F1(M1)

)
.

This definition opens the question: Are there enough injectives? As Pierre Deligne
is quite short on this and there are mistakes in the literature (see Remark 2.8), we
should give an answer.

Lemma 2.6. The category of simplicial sheaves has enough injectives.

Proof. Let F• be a simplicial sheaf. Let Pp be the functor from simplicial sheaves
to sheaves which sends a sheaf to its p-th level; i.e., F• is sent to the sheaf Fp on
Mp. Pick for any Fp an injective sheaf Ip on Gp × M , in which Fp embeds (for
existence see e.g. [19, Section III.2]).

Now we construct a right adjoint of Pp (analogous to [17, p. 409]): Let B be a
sheaf on Gp ×M . Define a simplicial sheaf on G• ×M as

(SpB)q =
∏

h∈Δ(q,p)

h−1B.

By the adjointness of the functors, injectivity of B implies injectivity of SpB. More-
over the equality

Hom

(
F•,

∏
p

SpI
p

)
=
∏
p

Hom(F•, SpI
p) =

∏
p

Hom(PpF•, Ip) =
∏
p

Hom(Fp, Ip)

shows that the simplicial sheaf F• embeds into
∏

p SpI
p because for each Fp there

is an injection into Ip. �

Now let
0 → F• → I•,0

δ→ I•,1
δ→ . . .

be an injective resolution. Omitting the first columns and taking global sections
yield to a double complex(

Ip,q(Mp),
p∑

i=0
(−1)i∂̃i + (−1)pδ

)
,

whose cohomology is defined to be the cohomology

H∗(M•,F•) = H∗

(
Ip,q(Mp),

p∑
i=0

(−1)i∂̃i + (−1)pδ

)
of the simplicial sheaf F• on the simplicial manifold M•.

The definition does not depend on the injective resolution chosen. In the non-
simplicial case, this is a well-known fact: the identity on the space and the sheaf
induces a morphism between two chosen injective resolutions, which is an iso-
morphism in cohomology. In the simplicial case, we need an additional argu-
ment: As before we obtain a morphism of the double complexes of global sec-
tions from the identity on the space. When taking cohomology in every horizontal
line (Ip,∗(Mp), (−1)pδ), this morphism will induce an isomorphism between the bi-
graded complexes. Hence we can apply the following lemma to see that we have an
isomorphism in cohomology.
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Lemma 2.7 (See e.g. [14, Lemma 1.19]). Suppose f : (C∗,∗
1 , d′1 +d′′1 ) → (C∗,∗

2 , d′2 +
d′′2) is a homomorphism of double complexes and the induced homomorphism

(Hq(Cp,∗
1 , d′′1), d′1) → (Hq(Cp,∗

2 , d′′2), d′2)

is an isomorphism. Then f induces an isomorphism in the total cohomology of
double complexes.

Remark 2.8. One could have the idea (e.g., [5, p. 3], [18, Section 3.2]) that an
injective resolution on any simplicial level would be sufficient as the maps ∂̃i lift
by the injectivity of the sheaf. But as this lift is not unique, it is unclear that the
simplicial relations hold, and thus there is no general reason why ∂ =

∑
i(−1)i∂̃i is

a boundary operator. In fact one can construct the following counterexample: Take
the trivial group acting on a point; then all ∂̃i : Z → Z are the identity. An injective
resolution of the abelian group Z is given by Z → C → C/Z. Beside id : C → C,
the complex conjugation is also a lift of idZ. Making appropriate choices, for the
lifts ∂̃i one finds an example where ∂ ◦ ∂ �= 0.

In practice, one usually uses acyclic resolutions, instead of injective ones, to
calculate cohomology. This works in the simplicial case, too. Let

0 → F• → A•,0 δ→ A•,1 δ→ . . .

be an acyclic resolution; i.e., each A•,k is a simplicial sheaf and all but the zeroth
cohomology of each sheaf Ap,q vanish. Let I•,∗ be a simplicial injective resolution.
The identity map on the simplicial manifold and the sheaf F• induce a homomor-
phism of the double complex of global sections (by injectivity of I), which induces
an isomorphism of the bi-complexes, (Hq(Ap,∗, δ), ∂) → (Hq(Ip,∗, δ), ∂), as acyclic
resolutions calculate cohomology. Thus the last lemma implies the isomorphism in
the cohomology of the double complexes.

In the examples which we study later, the simplicial sheaf will actually not
just be a sheaf of abelian groups but a cochain of complexes of simplicial sheaves
of abelian groups. A resolution for a chain complex goes by the name Cartan-
Eilenberg resolution and exists for cochain complexes in any abelian category with
enough injectives (compare [33, Section 5.7]). In our context, the resolution of
a cochain complex of simplicial sheaves is a triple instead of a double complex.
Nevertheless, one can form a total complex of the global sections of the triple
complex, and the cohomology of the cochain complex of simplicial sheaves is defined
as the cohomology of this total complex.

We will now discuss some explicit models for simplicial sheaf cohomology.

2.1.1. Simplicial de Rham cohomology. This exposition is based on [14, Section
6]. Let M• = {Mp} be a simplicial manifold. For any p, differential forms on Mp

form the cochain complex of sheaves (Ω∗
Mp

, d). The face and degeneracy maps of
M• induce, via pullback, face and degeneracy maps between the differential forms
on Mp and Mp±1. Thus, one obtains the simplicial sheaf Ω•,∗ of differential forms
on M•.

On the global sections of this sheaf

Ωp,q(M) = Ωq(Mp),
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there is a horizontal differential d : Ωp,q(M•) → Ωp,q+1(M•), given by the exterior
differential and vertical differential

∂ : Ωp,q(M•) → Ωp+1,q(M•),

given by the alternating sum of pullbacks along the face maps

(1) ∂(ω) =
p+1∑
i=0

(−1)i∂∗
i ω.

Proposition 2.9. (Ωp,q(M•), d + (−1)q∂)p,q forms a double complex.

Proof. (d+ (−1)q∂)2 = 0, because ∂2 = 0 by the simplicial relations, d∂ = ∂d as d
is functorial, and d2 = 0 by the well-known property of the exterior derivative. �

Moreover, since the differential forms form a sheaf of C∞-module, they form a
fine and hence acyclic sheaf.

In particular, for the simplicial manifold G• ×M , we have the double complex
Ωq(Gp ×M), which is a first de Rham type model for equivariant cohomology by
the following proposition.

Proposition 2.10 (Proposition 6.1 of [14]). Let M• be a simplicial manifold.
There is a natural isomorphism

H∗(Ω•,∗(M•), d + (−1)∗∂) ∼= H∗(‖M•‖,C).

2.1.2. Simplicial Čech cohomology.

Definition 2.11 (See [5,18]). A simplicial cover for the simplicial manifold M• is
a family U• = {U (p)} of open covers such that

(1) U (p) = {U (p)
α |α ∈ A(p)} is an open cover of Mp, for each p, and

(2) the family of index sets forms a simplicial set A• = {A(p)} satisfying
(3) ∂i(U (p)

α ) ⊂ U
(p−1)
∂iα

and σi(U (p)
α ) ⊂ U

(p+1)
σiα for every α ∈ A(p).

Definition 2.12 (See [5, 18]). Given a simplicial cover U•, one forms the Čech
chain groups Č•,∗(U•,F•) by

Čp,q(U•,F•) =
∏

α
(p)
0 ,...,α

(p)
q ∈A(p)

F p

(
U

(p)
α

(p)
0

∩ · · · ∩ U
(p)
α

(p)
q

)
,

with the usual Čech boundary operator δ : Čp,q → Čp,q+1 and the simplicial bound-
ary map ∂ : Čp,q → Čp+1,q defined as the alternating sum as above.

Observe that the third condition of the simplicial cover ensures that ∂ maps
between the Čech groups. The simplicial Čech cohomology, denoted by

Ȟ∗(U•,F•),

is the cohomology of the double complex (Čp,q, ∂, (−1)pδ). As in the non-simplicial
case (see [19, Section III.4]), any simplicial open cover induces a canonical homo-
morphism

Ȟ∗(U•,F•) → H∗(M•,F•).
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Moreover, given a refinement V• of the simplicial open cover U•, the natural dia-
gram

Ȟ∗(U•,F•) H∗(M•,F•)

Ȟ∗(V•,F•)

←→

←→

← →

commutes. Thus one can form the limit over all refinements of simplicial open
covers and obtain an isomorphism

lim
U•

Ȟ∗(U•,F•) → H∗(M•,F•).

For more details see [5, 18].

2.1.3. Simplicial singular cohomology. Let A be an abelian group. Later, the most
interesting cases for us will be A ∈ {Z,R,C,C/Z,R/Z}. Then there is the locally
constant sheaf Aδ, consisting of continuous maps to A furnished with the discrete
topology, in any simplicial degree. The maps ∂̃i and σ̃i are given by pullback along
∂i, respectively σi. One can calculate H∗(M•, A) via singular cohomology.

Definition 2.13 (See [14, 81]). The simplicial singular cochain complex

(C•,•
sing(M•, A), ∂, ∂sing)

is the double complex consisting of groups

Cp,q
sing = Cq

sing(Mp) = map(C∞(Δq,Mp), A)

of smooth singular cochains on each Mp with group structure induced from A, ver-
tical boundary map induced from the simplicial manifold, and horizontal boundary
map given by the singular boundary operator.

To obtain a double complex one has to use the boundary map ∂ +(−1)p∂sing. A
simplicial map f• : M•→M ′

• induces a map of double complexes f∗
• : C•,•

sing(M ′
•, A)→

C•,•
sing(M•, A).

Theorem 2.14 (Theorem 5.15 of [14]). There are functorial isomorphisms

H∗(‖M‖, A) = H∗
sing(M•, A) := H∗ (C•,•

sing(M•, A), ∂ + (−1)p∂sing
)
.

To compare singular cohomology with general sheaf cohomology, one can use
arguments of [32, pp. 191-200]. Sheafify the singular cochains Cq

sing(Mp): Let
Sq(Mp, A) be the sheaf associated to the presheaf

M ⊂ U �→ map(C∞(Δq, U), A).

Then one has an acyclic resolution

0 → A• → S0(M•, A) → S1(M•, A) → . . .

and hence
H∗(M•, A) = H∗(M•,S∗(M•, A)).

On the other hand, the global sections of Sq(Mp, A) are exactly Cq
sing(Mp).

Thus we have shown the following theorem.
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Theorem 2.15. Let

H∗(‖M‖, A) = H∗
sing(M•, A) = H∗(M•,S∗) = H∗(M•, A).

In particular, for M• = G• ×M , we obtain

H∗
G(M,A) = H∗

sing(G• ×M,A) = H∗(G• ×M,A).

2.1.4. Simplicial cellular cohomology. The most handy cohomology theory for cal-
culation is cellular cohomology. Recall (compare [30, p. 12]) that a CW complex is
a topological space X with a collection of subspaces, called cellular decomposition,

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X,

such that X0 is discrete, Xp is obtained from Xp−1 by attaching p-cells, X =
⋃

i Xi,
and U ⊂ X is closed if and only if U ∩Xp is closed in Xp for any p ∈ N. A map
f : X → Y between cellular complexes is called cellular if f(Xp) ⊂ Yp. The cellular
chain complex (see [30, pp. 118-122]) is given by Cn(X) = Hn

sing(Xn, Xn−1;A), and
dncell is the composition

Hn(Xn, Xn−1) → Hn(Xn, ∅) → Hn+1(Xn+1, Xn)

of the map induced from the inclusion (Xn, ∅) ⊂ (Xn, Xn−1) and the connecting
morphism of (Xn, ∅) ⊂ (Xn+1, ∅) ⊂ (Xn+1, Xn).

By a cellular decomposition of the simplicial manifold G•×M , we understand a
collection of topological spaces (Xp,q)p,q∈N, such that Xp,∗ is a cellular decomposi-
tion of Gp×M and all face and degeneracy maps are cellular. Thus we receive a dou-
ble complex, the simplicial cellular chain complex (Cq

cell(Gp ×M), dcell + (−1)q∂).
We define H∗

cell(G• ×M,A) to be the cohomology of this double complex.
One has the following small proposition, for which I did not find a reference in

the literature.

Proposition 2.16. There is an isomorphism

H∗
cell(G• ×M,A) = H∗

sing(G• ×M,A).

Proof. Given a map between the singular and cellular chains, Lemma 2.7 would
imply the result. Hence we are done if we find such a map for normal, i.e., non-
simplicial spaces, in a functorial manner. There is no map between singular and
cellular chains in general, but one can construct a complex of so-called simplicial
singular chains (see [13, Section V.8]) and functorial quasi-isomorphisms to both
singular and cellular chains. �

2.2. The Cartan model. A well-known de Rham-like model for equivariant co-
homology goes back to Henri Cartan ([10]). Our exposition follows [22]. Let G be
a compact Lie group acting smoothly on the smooth manifold M and denote the
Lie algebra of G by g = TeG. Let S∗(g∨) be the symmetric tensor algebra of the
(complex) dual of the Lie algebra g∨. The group G acts on this algebra by the
coadjoint action and on Ω∗(M) by pulling back forms along the map m �→ gm.
Hence we have a G-action on S∗(g∨) ⊗ Ω∗(M). The invariant part of this algebra
(S∗(g∨)⊗Ω∗(M))G is exactly what one calls the Cartan complex and is denoted by
Ω∗

G(M). In other words, the Cartan complex consists of G-equivariant polynomial
maps ω : g → Ω∗(M). Let ω1, ω2 ∈ Ω∗

G(M). Then there is a wedge product

(ω1 ∧ ω2)(X) = ω1(X) ∧ ω2(X).
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On this algebra one defines a differential as
dCω(X) = d(ω(X)) + ι(X�)ω(X),

for ω ∈ Ω∗
G(M)) and X ∈ g; i.e., one takes the differential on the manifold and

adds the contraction with the fundamental vector field. To make this differential
raise the degree by one, the grading on Ω∗

G(M) is given by
twice the polynomial degree + the differential form degree.

Lemma 2.17. (Ω∗
G, dC) is a cochain complex.

Proof. First, observe that dC increases the total degree by one, since d increases
the differential form degree, and the contraction ι, while decreasing the form degree
by one, increases the polynomial degree by one. Next, one has to check that the
differential really maps invariant forms to invariant forms and that it squares to
zero.

Let ω ∈ Ω∗
G(M)) and X ∈ g:
dCω(Adg X) = d(ω(Adg X)) + ι((Adg X)�)ω(Adg X)

= d(gω(X)) + ι(gX�g−1)g(ω(X))

= gd(ω(X)) + gι(X�)g−1g(ω(X))
= gdCω.

Thus dCω is G-equivariant. Moreover, we have
d2
Cω(X) = d2ω(X) + dι(X)ω(X) + ι(X)dω(X) + ι(X)2ω(X) = LXω(X)

and

LXω(X) = d

dt

∣∣∣∣
t=0

exp(tX)ω(X) = d

dt

∣∣∣∣
t=0
ω(exp(−tX)X exp(tX)) = d

dt

∣∣∣∣
t=0
ω(X) = 0.

Thus dC squares to zero; i.e., it is a boundary operator. �
In the special case of M = pt, i.e., of a single point, the Cartan algebra reduces

to the algebra of invariant symmetric polynomials
Ik(G) = ((S∗(g∨) ⊗ Ω∗(pt))G)k = (Sk(g∨))G.

2.3. Getzler’s resolution. In order to investigate cohomology of actions of non-
compact groups, Ezra Getzler [16, Section 2] defines a bar-type resolution of the
Cartan complex. We will apply his ideas slightly differently: The complex defined
by Getzler will allow us to compare equivariant integral cohomology (defined via
the simplicial manifold) with equivariant cohomology defined by the Cartan model.

As before, let a Lie group G act on a smooth manifold M from the left. Define
C-vector spaces Cp(G,S∗(g∨)⊗Ω∗(M)) consisting of smooth maps from the p-fold
Cartesian product

Gp → S∗(g∨) ⊗ Ω∗(M)
to the space of polynomial maps from g to differential forms on M . We give these
groups a bi-grading: The horizontal grading is the one of S∗(g∨) ⊗ Ω∗(M) defined
above, and the vertical grading is p. The Cartan boundary operator d + ι now
induces a map (−1)p(d+ ι), which increases the horizontal grading by 1 in any row.
As we are not restricted to the G-invariant part of S∗(g∨) ⊗ Ω∗(M), this map will
not square to zero, but

((−1)p(d + ι))2 = dι + ιd = L
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is the Lie derivative (see, e.g., [15, Proposition 1.121]). In the vertical direction,
there is a differential

d̄ : Ck(G,S∗(g∨) ⊗ Ω∗(M)) → Ck+1(G,S∗(g∨) ⊗ Ω∗(M))
defined by

(d̄f)(g0, . . . , gk|X) := f(g1, . . . , gk|X) +
k∑

i=1
(−1)if(g0, . . . , gi−1gi, . . . , gk|X)

+ (−1)k+1gkf(g0, . . . , gk−1|Ad(g−1
k )X)

for g0, . . . , gk ∈ G and X ∈ g.
Note, in particular, that the kernel of

d̄ : C0(G,S∗(g∨) ⊗ Ω∗(M)) → C1(G,S∗(g∨) ⊗ Ω∗(M))
is exactly Ω∗

G(M). Moreover, in case of a discrete group G, g = 0 and thus one
checks, that

Cp(G,S∗(g∨) ⊗ Ω∗(M)) = Cp(G,Ω∗(M)) = Ωp,∗(G• ×M)
and d̄ is equal to ∂.

In the case of a compact Lie group, the map d̄ admits a contraction (compare,
e.g., [18, p. 322]).

Lemma 2.18. Integration over the group, with respect to a right invariant prob-
ability measure, defines a map∫

G

: Cp(G,S∗(g∨) ⊗ Ω∗(M)) → Cp−1(G,S∗(g∨) ⊗ Ω∗(M))(2) (∫
G

f

)
(g1, . . . , gp−1,m) = (−1)i

∫
g∈G

f(g, g1, . . . , gp−1,m)dg

such that d̄
∫
G
f = f if d̄f = 0.

Proof. This is proven by a direct calculation:(
d̄

∫
G

ω

)
(g1, . . . , gp,m)

=
(∫

G

f

)
(g2, . . . , gp|X) +

p∑
i=2

(−1)i
(∫

G

f

)
(g1, . . . , gi−1gi, . . . , gp|X)

+ (−1)p+1gp

(∫
G

f

)
(g1, . . . , gp−1|Ad(g−1

p )X)

=
∫
G

f(g, g2, . . . , gp|X)dg +
p∑

i=2
(−1)i

∫
G

f(g, g1, . . . , gi−1gi, . . . , gp|X)dg

+
∫
G

gpf(g, g1, . . . , gp−1|Ad(g−1
p )X)dg

=
∫
G

(
f(g, g2, . . . , gp|X) +

p∑
i=2

(−1)if(g, g1, . . . , gi−1gi, . . . , gp|X)

+ (−1)p+1gpf(g, g1, . . . , gp−1|Ad(g−1
p )X)

)
dg.
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Now we apply d̄f(g, g1, . . . , gp|X) = 0:

=
∫
G

(f(g1, . . . , gp|X) − f(gg1, . . . , gp|X) + f(g, g2, . . . , gp|X)) dg

= f(g1, . . . , gp|X) −
∫
G

f(gg1, g2, . . . , gp|X)dg +
∫
G

f(g, g2, . . . , gp|X)dg

= f(g1, . . . , gp|X).

�

Thus, for compact groups, the vertical cohomology of this bi-graded collection
of groups is the Cartan complex.

One can turn the bi-graded collection Cp(G,S∗(g∨) ⊗ Ω∗(M)) of groups into a
double complex. Therefore Getzler defines another map,

ῑ : Cp(G,Sl(g∨) ⊗ Ωm(M)) → Cp−1(G,Sl+1(g∨) ⊗ Ωm(M)),

given by the formula

(ῑf)(g1, . . . , gp−1|X) :=
p−1∑
i=0

(−1)i d

dt

∣∣∣∣
t=0

f(g1, . . . , gi, exp(tXi), gi+1, . . . , gp−1|X),

where Xi = Ad(gi+1 . . . gp−1)X.

Lemma 2.19 (Lemma 2.1.1 of [16]). The map ῑ has the following properties:

ῑ2 = 0 and d̄ῑ + ῑd̄ = −L.

Proof. This is shown in [16] by recollection of the sums in the definition of ῑ and d̄.
�

Moreover one obtains the following.

Lemma 2.20 (Corollary 2.1.2 of [16]). dG = d̄ + ῑ + (−1)p(d + ι) is a boundary
operator on the total complex

⊕
p+2q+r=n C

p(G,Sq(g∨) ⊗ Ωr(M)).

Proof. dG increases the total index by one; as d̄ increases the first index; d increases
the third index; ι decreases the third, while it is increasing the second index; and ῑ
decreases the first index, while it is increasing the second one.

As d and ι are equivariant under the G-action, they commute with d̄. And as d
and ι only act on the manifold M and not on the group part, the same is true for
ῑ. Thus

d2
G = (d̄ + ῑ)2 + (−1)p(d̄ + ῑ)(d + ι) + (−1)p±1(d + ι)(d̄ + ῑ) + (d + ι)2

= d̄ῑ + ῑd̄ + (dι + ιd)
= −L + L = 0.

�

Remark 2.21. The reader who compares this with the original paper of Getzler will
note that we changed some signs. It just seems more natural to us in this way. Fur-
thermore, Getzler uses some reduced subcomplex, which is, by standard arguments
on simplicial modules (compare Proposition 1.6.5 in [23]), quasi-isomorphic to the
full complex, which we have taken.
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One can check that⎛⎜⎜⎝
⎛⎜⎜⎝ ⊕

p+q=n
q+r=k

Cp(G,Sq(g∨) ⊗ Ωr(M))

⎞⎟⎟⎠
n,k

, d̄ + (−1)pι, (−1)pd + ῑ

⎞⎟⎟⎠
is a double complex. But this point of view will not fit into the construction,
which we want to do with this bi-graded module later: We want to turn the groups
Cp(G,S∗(g∨) ⊗ Ω∗(M)) into simplicial sheaves on G• ×M .

Definition 2.22. A simplicial homotopy cochain complex of modules is a triple
(M•,∗, f, s), where M•,∗ is a Z-graded simplicial module, f is a map of simplicial
modules which increases the degree by one, and s is a simplicial zero homotopy of
f2 which commutes with f and squares to zero, i.e.,

s∂ + ∂s = −f2, sf = fs, and s2 = 0.

Example 2.23. Observe that
(C•(G,S∗(g∨) ⊗ Ω∗(M)), d + ι, ῑ)

is a simplicial homotopy cochain complex.

Definition + Proposition 2.24. The total complex of a simplicial homotopy
cochain complex (M•,∗, f, s) is the chain complex⎛⎝( ⊕

p+q=n

Mp,q

)
n

, ∂ + s + (−1)pf

⎞⎠ .

Proof. We have to check that ∂ + s + (−1)pf defines a boundary map. Therefore
we calculate
(∂ + s + (−1)pf)2 = ∂2 + s2 + ∂s + s∂ + (−1)p(∂ + s)f + (−1)p−1f(∂ + s) + f2

= s∂ + ∂s + f2

= 0.
�

Observe that the total complexes of the interpretation of C•(G,S∗(g∨)⊗Ω∗(M))
as double complex and as simplicial homotopy cochain complex coincide. Moreover,
note for our applications later that in the first column of the double complex in-
terpretation and the degree zero part of the interpretation as simplicial homotopy
cochain complex are equal. In formulas this means⎛⎜⎜⎝ ⊕

p+q=n
q+r=k

Cp(G,Sq(g∨) ⊗ Ωr(M))

⎞⎟⎟⎠
n,0

= Cn
(
G,S0(g∨) ⊗ Ω0(M)

)
.

2.4. A quasi-isomorphism. In this section, we will discuss a map defined in
[16, Section 2.2]. It will relate the complex C∗(G,S∗(g∨) ⊗ Ω∗(M)) from the last
section to the double complex Ω∗(G•×M), which consists in degree (p, q) of q-forms
on Gp×M with horizontal boundary map d = dGp +dM and vertical boundary map
∂ from the simplicial manifold structure. Thus we have an explicit identification
of chains in the one complex with chains in the other complex. This will allow us
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to compare our definition of equivariant differential cohomology (Section 3.2) with
definitions given before.

Definition 2.25 (Definition 2.2.1 of [16]). The map

J : Ω∗(Gp ×M) →
p⊕

l=0

Cl(G,S∗(g∨) ⊗ Ω∗(M))

is defined by the formula

J (ω)(g1, . . . , gl|X) :=
∑

π∈S(l,p−l)

sgn(π) (iπ)∗
(
ιπ(l+1)(X

(π)
l+1) . . . ιπ(p)(X(π)

p )ω
)
.

Here S(l, p− l) is the set of shuffles, i.e., permutations π of {1, . . . , p}, satisfying

π(1) < · · · < π(l) and π(l + 1) < · · · < π(p),

X
(π)
j = Ad(gm . . . gl)X, where m is the least integer less than l such that π(j) <

π(m), ιj means that the Lie algebra element should be a tangent vector at the j-th
copy of G, and iπ : Gl ×M → Gp ×M is the inclusion x �→ (h1, . . . , hp, x) with

hj =

{
gm if j = π(m), 1 ≤ m ≤ l,

e ∈ G otherwise,

which is covered by the bundle inclusion TM → T (Gp ×M).

Observe that the image of ω under J only depends on the zero form part and,
in direction of any copy of G, on the one form part at the identity e ∈ G.

The next lemma, which is mainly a citation of [16, Lemma 2.2.2] but with signs
corrected, shows that the map J can be interpreted as a map of double complex.

Lemma 2.26. The map J respects the boundaries with the correct sign, i.e.,

J ◦ ∂ =
(
d̄ + (−1)pι

)
◦ J ,

and, after decomposing d = dG+dM with respect to the Cartesian product Gp×M ,

J ◦ ((−1)p dM ) = (−1)p
′
d ◦ J and J ◦ (−1p) dG = ῑ ◦ J ,

where p is the simplicial degree before and p′ the simplicial degree after application
of the map J .

Proof. The proof is given in [21, Lemma 2.13]. The idea is to check the terms type
by type. �

Moreover, the map J induces an isomorphism in the cohomology of the associ-
ated total complexes.

Theorem 2.27 (Theorem 2.2.3 of [16]). J is a quasi-isomorphism.

3. The definition of equivariant differential cohomology

The are several attempts at a definition [18, 24, 28]. The most elaborate one
is given by Kiyonori Gomi in [18], where he defines equivariant smooth Deligne
cohomology of a smooth manifold M acted on by a Lie group G. His investigations
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(for G a compact group) can be summarized in the following diagram with exact
diagonals:

(3)

Ωn−1(M,C)G�im d Ωn
cl(M,C)G

Ĥn(M,Z) Hn
G(M,C)

Hn−1(G∗ ×M,π−1C/Z) Hn
G(M,Z).

←

→
a ← →R

←

→
I

←→

←↩
→

The subscript G stands for equivariant cohomology and the superscript G for the
subspace of differential forms on M , which are equivariant. Gomi defines the maps
and shows that the diagonals are exact in the middle.

From our point of view, this diagram is not satisfactory: on the one hand, one
does not have the Bockstein sequence. On the other hand, closed equivariant forms
are not what one expects in the upper right corner, as there indeed exists a map

Ωn
cl(M,C)G → Hn

G(M,C).
But this map is in general not surjective, as not every n-class in equivariant coho-
mology is represented by a closed equivariant n-form: There are classes represented
by (non-zero degree) polynomials g → Ω∗(M). As we have seen, these are related
to the moment map, which plays an important role when discussing equivariant
characteristic classes and forms. This information is neglected in Gomi’s curvature
map.

After introducing a necessary technical subtlety, we will give a definition of equi-
variant differential cohomology and show that it has exactly the expected proper-
ties.

Since our work was partially motivated by the previous work of Gomi, we will
discuss his definition afterwards and show how to define a better curvature map
R such that one obtains a hexagon with Gomi’s definition of equivariant Deligne
cohomology in the middle. The difficulty is in general not to show that there is a
hexagon, as this follows directly from the way of the definition by ideas of [7]. The
difficulty is to find the right definition, which leads to the expected groups in the
corners of the hexagon. At the end of this section we will give some remarks on the
definitions of [24, 28] for equivariant differential cohomology.

Notice that we always work with complex valued differential forms for simplic-
ity. All statements also hold for real forms and real cohomology.

3.1. Simplicial homotopy cochain complexes. To define equivariant differen-
tial cohomology, we want to apply the model for equivariant cohomology defined
by Getzler, which we introduced in Section 2.3. As noted there, this model is not
a cochain complex of simplicial modules, but only a simplicial homotopy cochain
complex. Before we can give our definition, we first have to investigate the algebraic
structure of simplicial homotopy cochain complexes in more detail.
Definition 3.1. A simplicial sheaf homotopy cochain complex of modules on a
simplicial manifold M• is a triple (F•,∗, f, s), where F•,∗ is a Z-graded simplicial
sheaf of modules on M• which is bounded from below,1 f is a map of simplicial

1This means there is an integer k such that each Fp,q = 0 if q < k.
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sheaves which increases the Z-grading by one, and s is a simplicial zero homotopy
of f2, i.e., in simplicial degree p, s = (si)i=0,...,p−1, where

si : σ−1
i Fp,q → Fp−1,q+1, i = 0, . . . , p− 1,

are maps of sheaves such that the simplicial relations of degeneracy maps hold, s
commutes with f , and

sp ◦ ∂̃p+1 = −f2 :
(
σ−1
p

(
∂−1
p+1Fp,q

))
= Fp,q → Fp,q+1,

si ◦ ∂̃j =

{
∂̃j ◦ si−1 if i < j,

∂̃j−1 ◦ si if i > j + 1,

sj ◦ ∂̃j = sj ◦ ∂̃j+1s0 ◦ ∂̃0 = 0.

A morphism of a simplicial sheaf homotopy cochain complex is a map of the sim-
plicial sheaves, which respects the grading and commutes with both the ‘boundary
map’ f and the zero homotopy.

Definition + Proposition 3.2. Let w : (F•,∗, f, s) → (F̃•,∗, f̃ , s̃) be a morphism
of a simplicial homotopy cochain complex. The cone of w is the simplicial sheaf
homotopy cochain complex

Cone(w) :=
((

F•,k+1 ⊕ F̃•,k
)
k∈N

,

(
−f −w

0 f̃

)
,

(
s 0
0 s̃

))
.

Proof. The only point which is worth checking is the relation between the ‘boundary
map’ and the homotopy:

−
(
−f −w

0 f̃

)2

= −
(
f2 fw − wf̃

0 f̃2

)
=
(
−f2 0
0 −f̃2

)
=
(
s∂ + ∂s 0

0 s̃∂ + ∂s̃

)
=
(
s 0
0 s̃

)
∂ + ∂

(
s 0
0 s̃

)
.

�

We are now going to define the cohomology of a simplicial sheaf homotopy
cochain complex (F•,∗, f, s) using a Čech model. Let U• be a simplicial cover
of the simplicial manifold M•. This defines for each q a resolution of the simplicial
sheaf F•,q (compare Section 2.1.2)

Č•,q,∗(U•,F•,k)

with Čech boundary map δ. The properties of the simplicial cover imply that ∂
and s restrict to the Čech groups. Hence, on the total complex of this triple graded
collection of modules, we have a boundary map( ⊕

p+q+r=n

Čp,q,r, ∂ + s + (−1)pf + (−1)p+qδ

)
,

where ∂ and s are the alternating sums over the maps ∂̃i and si respectively.



EQUIVARIANT DIFFERENTIAL COHOMOLOGY 8255

Thus we can define Ȟ(U•, (F•,∗, f, s)) to be the cohomology of this cochain
complex. As for classical Čech cohomology, refinements of the simplicial cover
induce homomorphisms of the associated cohomology theories. Thus we define

Ȟ(M•, (F•,∗, f, s)) = lim
U•

Ȟ(U•, (F•,∗, f, s))

to be the limit over all refinements of open covers.
If the simplicial sheaf homotopy cochain complex (F•,∗, f, s) = (F•,∗, d, 0) ac-

tually is a cochain complex of simplicial sheaves, the total complex of the Čech
resolution of both types (compare Section 2.1.2) coincides, and hence the cohomol-
ogy defined here coincides with the simplicial sheaf cohomology. Moreover, if the
sheaves of (F•,∗, f, s) are fine, then the Čech direction contracts by the standard
argument and the cohomology of (F•,∗, f, s) is the cohomology of the total complex
(
⊕

p+q=n Fp,q(Gp ×M), (−1)pf + s + ∂).

3.2. The definition and central properties. We will define equivariant differ-
ential cohomology in the fashion of Deligne cohomology, i.e., taking the cohomology
of a sheaf – more precisely, a simplicial sheaf homotopy cochain complex – on the
simplicial manifold G• ×M .

As a first step, to present the equivariant differential forms, we would like to find
a simplicial sheaf homotopy cochain complex C• = C•,∗ consisting of fine sheaves
such that its global sections are given by C•(G,S∗(g∨) ⊗ Ω∗(M)).

The map π : G• ×M → {e}• ×M, (g1, . . . , gp,m) �→ (g1 . . . gpm) is a morphism
of simplicial manifolds. S∗(g∨) ⊗ Λ∗T∨M is a bundle over M , with left action
of G on M , the induced action on the cotangent bundle, and coadjoint action on
the polynomial, whose global sections are S∗(g∨) ⊗ Ω∗(M). We can interpret this
bundle as a simplicial bundle on the simplicial manifold {e}• × M , with all face
and degeneracy maps being the identity. The global sections of the pullback bundle
π∗(S∗(g∨) ⊗ Λ∗T∨M) in simplicial level p are Cp(G,S∗(g∨) ⊗ Ω∗(M)). Thus take
for U ⊂ Gp ×M open

Cp(U) := Γ(U, (π∗(S∗(g∨) ⊗ Λ∗T∨M)p)).
This is a sheaf of C∞(Gp × M)-modules, hence fine. The morphism between the
simplicial levels ∂̃i : ∂−1

i Cp → Cp+1 and σ̃i : σ−1
i Cp → Cp−1 are given by pullback

along the simplicial bundle maps.
The map d+ι : C•,l → C•,l+1 increases the second grading and is clearly a map of

sheaves, as booth operations are local. The maps d̄ and ῑ operate between different
simplicial levels: on global sections d̄ is the alternating sum of the maps ∂̃i, while ῑ,

ῑ : Ck(G,Sl(g∨) ⊗ Ωm(M)) → Ck−1(G,Sl+1(g∨) ⊗ Ωm(M)),

is given by the formula ῑ =
∑k−1

i=0 (−1)iῑi, where each ῑi is the map of sheaves

ῑi : σ−1
i Ck → Ck−1

(ῑif)(g1, . . . , gk−1|X) = d

dt

∣∣∣∣
t=0

f(g1, . . . , gi, exp(tXi), gi+1, . . . , gk−1|X),

with Xi = Ad(gi+1 . . . gk−1)X.
From the discussion of the maps d + ι, ῑ, and d̄ in Section 2.3 one obtains that

(C•,∗, d + ι, ῑ)
is a simplicial sheaf homotopy cochain complex.
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C•,0 is the simplicial sheaf of smooth functions in which the simplicial sheaf Z
injects as locally constant Z-valued functions. This induces a map of simplicial
sheaf homotopy cochain complexes

(Z, 0, 0) → (C•,∗, d + ι, ῑ) ,
where Z is located in degree zero. With respect to this injection, we define

DC(n)G•×M = Cone(Z⊕ C•,≥n → C•,∗, (z, ω) �→ ω − z)[−1].

Definition 3.3. Let G be a Lie group acting on a smooth manifold M. The full
G-equivariant differential cohomology of M is defined to be the cohomology of
simplicial sheaf homotopy cochain complexes DC(n):

Ĥn
G(M) := Hn(G• ×M,DC(n)G•×M ).

Observe that in any degree, there is a specific sheaf depending on the degree to
define equivariant differential cohomology. The attribute “full” is used to stress the
difference of our definition from previous ones, which are discussed below.

Theorem 3.4. If G is a compact group, one has the following hexagon:
(4)

Ωn−1
G (M)�(d + ι) Ωn

G(M)cl

Hn−1
G (M,C) Ĥn

G(M,Z) Hn
G(M,C)

Hn−1
G (M,C/Z) Hn

G(M,Z)
←

→
a

← →
d+ι

←

→← →

←
→

← →R

←
�
I

←↩
→

← →
−β

← →

where the line along the top, the one along the bottom – with β denoting the
Bockstein homomorphism – and the diagonals are exact. Moreover, one has

Hp(G• ×M,DC(n))G•×M = Hp
G(M,Z) for p > n,(5)

Hp(G• ×M,DC(n))G•×M = Hp−1
G (M,C/Z) for p < n.(6)

The kernel of a is given by the image of Hn−1
G (M,Z).

Proof. In the same spirit as [6] and [18] we investigate differential cohomology by
the following two short exact sequences:

0 → Cone(C•,≥n i→ C•,∗)[−1] a→D(n) I→ Z → 0,(7)

0 → Cone(Z −i→ C•,∗)[−1] →D(n) R→ C•,≥n → 0(8)
of simplicial homotopy cochain complexes of sheaves and the exact triangle

DC(n)G•×M → Z⊕ C•,≥n → C•,∗ → DC(n)G•×M [1],
which has the following interesting part in its long exact cohomology sequence:

(9) Hn−1(G• ×M,Z) → Hn−1(G• ×M, C•,∗) → Hn(G• ×M,DC(n))
(I,R)→ Hn(G• ×M,Z) ⊕Hn(G• ×M, C•,≥n) (−i,i)−−−−→ Hn(G• ×M, C•,∗).

Recall from Section 2.1 that
Hp(G• ×M,Z) = Hp(‖G• ×M‖,Z) = Hp

G(M,Z).
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Since C•,∗ is fine and, as for compact Lie groups, the Getzler resolution contracts
to the Cartan complex (see Section 2.3), we have

Hp(G• ×M, C•,∗) = Hp
G(M,C).

Further, we have quasi-isomorphisms

Cone(Z −i→ C•,∗) � Cone(Z −i→ Ω•, ∗) � Cone(Z −i→ Cδ) � Cδ/Z,

by Section 2.4, the fact that differential forms are a resolution of locally constant
functions, and since the inclusion of integral valued functions is injective. Thus

Hp(G• ×M,Cone(Z −i→ C•,∗)[−1]) = Hp−1
G (M,C/Z).

Since by degree reasons Hp(G•×M, C•,≥n) = 0 for p < n, the long exact cohomology
sequence of (8) implies (6).

Further
Hn(G• ×M, C•,≥n)

=
{
ω ∈ (S∗(g∨) ⊗ Ω∗(M))n

∣∣d̄ω = 0, (d + ι)ω = 0
}

= Ωn
G(M)cl,

since d̄ω = 0 is equivalent to G-invariance.
The last sheaf left for discussion is Cone(C•,≥n i→ C•,∗). We can turn to global

sections when calculating cohomology, because the sheaves are fine. Since the
inclusion is injective, the cone is quasi-isomorphic to the quotient. Applying the
contraction of Lemma 2.18, one can reduce the simplicial direction and obtain

Hn(G• ×M,Cone(C•,≥n i→ C•,∗)[−1]) = Ωn−1
G �d + ι,

Hp(G• ×M,Cone(C•,≥n i→ C•,∗)[−1]) = 0 for p > n.

This implies (5) by the long exact cohomology sequence of (7).
To achieve the statement about the Bockstein, observe that the long exact co-

homology sequence of the exact triangle

Cone(Z −i→ Cδ)[−1] → Z
−i→ Cδ → Cone(Z −i→ Cδ)

is the Bockstein sequence, up to a minus sign. Comparing this with (9) via the
inclusion of (8) results in the following commutative diagram:

Hn−1
G (M,Z) Hn−1

G (M,C) Hn−1
G (M,C/Z) Hn

G(M,Z) Hn
G(M,C)

Hn−1
G (M,Z) Hn−1

G (M,C) Ĥn
G(M,Z) Hn

G(M,Z) ⊕ Ω∗
cl(M)G (−ι,ι)−−−−→ Hn

G(M,C),

⇐⇐

←→

⇐⇐

←→

←→

← →
−β

←→ id⊕0

← →
−ι

⇐⇐

←→ ←→ ←→
I⊕R

from which the assertion follows.
The map

a : Ωn−1
G (M)�(d + ι)

(
Ωn−2

G (M)
)→ Hn(G• ×M,DC(n))

is induced from (7). To achieve that R◦a = d+ι, note that any η ∈ Ωn−1
G (M)�d + ι

is represented under the quasi-isomorphism Cone(C•,≥n i→ C•,∗) � C•,<n by an
element of the form ((. . . , 0, d + ιη′), (. . . , 0, η′)) with η − η′ ∈ im(d + ι). The
inclusion to DC(n) maps this element to (0, (. . . , 0, (d + ι)η), (. . . , 0, η)). Moreover
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R is the projection to the tuple of forms in the middle. The deviation between η
and |η′ does play a role since (d + ι)2 = 0. Thus we obtain the assertion. �

Remark 3.5. The idea that the main information of a differential extension of a
(generalized) cohomology theory is covered by a hexagon shaped diagram as above
can be found in [29] and [9]. These authors apply the information of the hexagon
diagram to prove uniqueness theorems. Our version of the hexagon is based on the
one of Bunke and Schick.

In the diagram version by James Simons and Dennis Sullivan, differential forms
with integral periods do appear: A closed differential form ω on a manifold is said
to have integral periods if the integral

∫
c
ω is an integer for any integral singular

cycle c. It is not obvious how to translate this definition to the equivariant case.
The Bockstein long exact sequence of 0 → Z → Cδ → Cδ/Z → 0 shows that a

complex cohomology class is integral if and only if its image in C/Z-valued coho-
mology is zero. This motivates us to define: A closed equivariant differential form
has integral periods if and only if its image in C/Z-valued equivariant cohomology
vanishes.

Using this definition, it follows directly from the long exact sequence of (7) that
our definition of equivariant differential cohomology also fits into the equivariant
generalization of the Simons-Sullivan character diagram.

Example 3.6. Of particular interest is the cohomology of the classifying space,
which is equal to the equivariant cohomology of the point. Thus, let M = pt be a
point. Then the hexagon (4) reduces in even degrees to

0 (Sn(g∨))G

0 Ĥ2n
G (pt,Z) H2n(BG,C)

Hn−1(BG,C/Z) H2n(BG,Z)

←

→
a

← →
d+ι

←

→←

→

←

→

← →R

←

�
I

←↩
→

← →
−β

← →

and in odd degrees to

(Sn(g∨))G 0

H2n(BG,C) Ĥ2n+1
G (pt,Z) 0

H2n(BG,C/Z) H2n+1(BG,Z)

←

→
a

← →
d+ι

←

→

← →

←

→

← →R

←

�
I

←↩
→

← →
−β

← →

Hence

Ĥn
G(pt,Z) =

{
Hn(BG,Z) if n is even,
Hn−1(BG,C/Z) if n is odd.

The contravariant functor ĤG assigning an abelian group to the G-manifold M
is not homotopy invariant, but its deviation from homotopy invariance is measured
by the homotopy formula.
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Lemma 3.7. Let it : M → [0, 1]×M be the inclusion determined by t ∈ [0, 1] and
let G act trivially on the interval. Let ω ∈ (S∗(g∨) ⊗ Ω∗([0, 1] ×M)n)G:

(dM + ι)

(∫
[0,1]×M/M

ω

)
= i∗1ω − i∗0ω +

∫
[0,1]×M/M

(dM + ι)ω.

Proof. Going to local coordinates (using a partition of unity), this is the derivative
of the integral by the lower bound, the upper bound, and the interior derivative. �

Proposition 3.8. If x̂ ∈ Ĥn
G([0, 1] ×M,Z), then

i∗1x̂− i∗0x̂ = a

(∫
[0,1]×M/M

R(x̂)

)
,

where we have kept the notions of the previous lemma.

Proof. As equivariant integral cohomology is homotopy invariant, there is a class
y ∈ Hn(M,Z) such that p∗My = I(x̂). As I is surjective, choose a lift ŷ ∈
Ĥn

G(×M ;Z) with I(ŷ) = y. Thus I(p∗M ŷ − x̂) = 0, and hence x̂ = p∗M ŷ + a(ω)
for some ω ∈ (S∗(g∨) ⊗ Ω∗([0, 1] × M)n−1)G. Therefore (d + ι)ω = R(a(ω)) =
R(x̂)−R(p∗M ŷ). We can write ω = dt∧α+ β, where dt corresponds to the interval
and α, β are forms on p∗MTM . On the one hand,

i∗1x̂− i∗0x̂ = a (i∗1ω − i∗0ω) = a (i∗1β − i∗0β) .

On the other hand,

a

(∫
[0,1]×M/M

R(x̂)

)
= a

(∫
[0,1]×M/M

R(x̂) − p∗MR(ŷ)

)
,

and, as fiber integrals over basic forms vanish,

= a

(∫
[0,1]×M/M

(d + ι)ω

)

= a

(∫
[0,1]×M/M

(dM + ι)ω

)
+ a

(∫
[0,1]×M/M

d[0,1]ω

)

= a

(∫
[0,1]×M/M

(dM + ι)dt ∧ α

)
+ a

(∫
[0,1]×M/M

d[0,1]β

)

= a

(
(i∗0 − i∗1)dt ∧ α + (dM + ι)

(∫
[0,1]×M/M

dt ∧ α

))
+ a ((i∗1 − i∗0)β)

= a (i∗1β − i∗0β) .

In the last step we use that a vanishes on exact forms. �
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3.3. Comparison to previous definitions. In this section, we want to explain
the difference of our definition from previous attempts. The most elaborate one is
given in [18]. Translated to the cone construction, his definition is the following.

Definition 3.9. Let M be a G-manifold for a Lie group G. The equivariant Deligne
complex in degree n is defined as

DGomi(n)G•×M = Cone(Z⊕F1
nΩ•,∗ → Ω•,∗, (z, ω) �→ ω − z)[−1].

Here F1
nΩ∗

C
is the simplicial subsheaf achieved from the simplicial sheaf of differen-

tial forms on G•×M by imposing the following conditions: in simplicial level zero,
i.e., on M , forms shall have at least degree n, and on any other level the differential
form degree on the G-part is at least 1 if the total form degree is less than n.

Definition 3.10. Let G be a Lie group acting on a smooth manifold M. The
G-equivariant differential cohomology of M is defined to be the hypercohomology

Ĥn
G(M) := Hn(G• ×M,DGomi(n)Gp×M ).

The analog arguments as applied in the proof of Theorem 3.4 yield to the fol-
lowing diagram.

Theorem 3.11. Let G be a compact Lie group acting from the left on the smooth
manifold M . Then there is the following commutative diagram:

(10)

(Ωn−1(M))G�d
(
Ωn−2(M)G

) Hn(G• ×M,F1
nΩ∗)

Hn−1
G (M,C) Ĥn

G(M,Z) Hn
G(M,C)

Hn−1
G (M,C/Z) Hn

G(M,Z)

←
→
a

← →
d+∂

←
�← →

←

→

←
→R

←

�
I← →

← →
−β

← →

where the top line, the bottom line, and the diagonals are exact.

Remark 3.12. Parts of this diagram are due to Gomi ([18]), but as he partially de-
fined maps to different groups in the corners, he did not achieve the entire hexagon.
The curvature map of Gomi can be recovered by combining the curvature map R,
given above in the hexagon, with the map

Hn(G• ×M,F1
nΩ∗) → Ωn

cl(M)G,

induced from projecting a cocycle
⊕n

i=0 Ωn−1(Gi×M) � (ωi) �→ ω0 to the invariant
form part.

If G is a discrete group, the diagram coincides with the one of Theorem 3.4. If G
is non-discrete and acting freely on M such that the quotient space is a manifold, one
would like to compare equivariant differential cohomology with differential cohomol-
ogy of the quotient. In general, one cannot expect that Ĥn

G(M,Z) = Ĥn(M/G,Z)
as
(
Ωn−1(M)

)G is different from Ωn−1(M/G). To see this in a very explicit ex-
ample, take M = G; then, in degree n = 2, Ωn−1(M)G = Ω1(G)G = g∨, but
Ωn−1(M/G) = Ω1(pt) = 0.

Moreover, one cannot expect that the map Hn−1
G (M,C/Z) → Ĥn

G(M,Z) is injec-
tive as in our definition, because Hn−1(G• ×M,F1

nΩ∗) will not vanish in general.
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To see this, take the following example for any positive dimensional Lie group G:

H2(G•×M,F1
3Ω∗)=ker

(
d + ∂ : F1Ω1(G×M)→Ω2(G×M) ⊕ Ω1(G×G×M)

)
.

If ω ∈ Ω1(G × M) has form degree one on G, then ∂ω = 0 means that for any
g1, g2 ∈ G, m ∈ M , and any vector field X = X1 +X2 +XM , decomposed into the
tangent direction of the first copy of G, the second copy of G and M , one has

0 = (∂ω)(g1, g2,m)[X]
= ω(g2,m)[X2] − ω(g1g2,m)[X1g2 + g1X2] + ω(g1, g2m)[X1].(11)

Taking X1 = 0 this implies that actually ω = f ∈ C∞(M, g∨ ⊗ C). Moreover,
taking X2 = 0 in (11), we obtain Adg ◦ f = L∗

gf for any g ∈ G. Finally, since
dω = 0, one has dMf = 0. Hence

H2(G• ×M,F1
3Ω∗) = map(π0(M), g∨) �= ∅.

To investigate the group Hn(G• × M,F1
nΩ∗) in the upper right corner of (10)

further, recall from Section 2.2 that the Cartan complex for equivariant cohomology
is defined as

(d + ι)n : Ωn
G(M) → Ωn+1

G (M),

where Ωn
G(M) =

(
(S∗(g∨) ⊗ Ω∗(M))G

)n
.

Proposition 3.13. There is a natural isomorphism

Hn(G• ×M,F1
nΩ∗) → ker(d + ι)n�(d + i)

(
n/2⊕
k=1

(
Sk(g∨) ⊗ Ωn−1−2k(M)

)G)
.

Proof. In Section 2.4 we defined a quasi-isomorphism

J : Ω∗(Gp ×M) →
p⊕

l=0

Cl(G,S∗(g∨) ⊗ Ω∗(M)).

Let

X l,k,m =

{
0 if k = 0 and m < n,

Cl(G,Sk(g∨) ⊗ Ωm(M)) otherwise.

The double complex (X•,(2∗+∗), d + ι + d̄ + ῑ) is a subcomplex of C•(G,S∗(g∨) ⊗
Ω∗(M)): one has to check that the inclusion commutes with boundaries. By the
way X is defined, the only reason for which it is perhaps not a subcomplex, could
arise from the maps which are turned into zero maps, as they map to the zero
space. Thus, the problem can only come from maps lowering indices, namely ι and
ῑ, but these two raise the second index; hence their image does not lie in one of the
spaces X l,0,m, with m < n.

From the definition of J one checks that

J (F1
nΩ∗(G• ×M)) ⊂ X•,∗,∗.
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Moreover, J is the identity on those forms which have vanishing degree on the
group part and

Hn−1
(
C•(G,S∗(g∨) ⊗ Ω∗(M))�X•,2∗,∗

)
= Ωn−1(M)G�d

(
Ωn−2(M)G

)
by integration over the first copy of G (compare Lemma 2.18). Hence, J and
the inclusion of the Cartan complex into Getzler’s resolution induce the following
commutative diagram with exact rows:

Hn−1
G (M,C) (Ωn−1(M))G�d

(
Ωn−2(M)G

) Hn(G• ×M,F1
nΩ∗) Hn

G(M,C) 0

Hn−1
G (M,C) (Ωn−1(M))G�d

(
Ωn−2(M)G

) Hn(X∗,(2∗+∗)) Hn
G(M,C) 0

Hn−1
G (M,C) (Ωn−1(M))G�d

(
Ωn−2(M)G

) ker(d + ι)n�∼ Hn
G(M,C) 0

←→

←→ J∗ ←→ id

←→
d+∂ ←→

←→ J∗

←→

←→

←→ ←→
d+ι ←→ ←→

←→

← → ← →id

←→
d+ι

← →

←→

← →

←→

where ker(d + ι)n�∼ should denote the right-hand side of the assertion. By the five
lemma this diagram shows that there is the isomorphism as claimed. �

Hence, we haven proven the following alteration of Theorem 3.11.

Theorem 3.14. For any compact Lie group acting on a smooth manifold M ,
there is the commutative diagram
(12)

(Ωn−1(M))G�d
(
Ωn−2(M)G

) ker(d + ι)n�
(d + i)

(⊕n/2
k=1 S

k(g∨) ⊗ Ωn−1−2k(M)
)G

Hn−1
G (M,C) Ĥn

G(M,Z) Hn
G(M,C)

Hn−1
G (M,C/Z) Hn

G(M,Z)

←

→
a

← →
d+ι

←

�

← →

←

→

← →R

←

�
I← →

← →
−β

←

→

whose top line, bottom line, and diagonals are exact.

This diagram enables us to compare our definition of full equivariant differential
cohomology with the one of Gomi. Therefore define a subsheaf F1

nC•,∗ ⊂ C•,∗. In
the bundle S∗(g∨) ⊗ Λ∗(T∨M), we have the subbundle

S≥1(g∨) ⊗ Λ<n(T∨M) + (S∗(g∨) ⊗ Λ∗(T∨M))≥n
.

F1
nC•,∗ is defined to be the sheaf of sections of (the pullback to the simplicial

manifold of) this bundle. As one checks immediately

F1
nC0,n−1(M) =

⎛⎝n/2⊕
k=1

Sk(g∨) ⊗ Ωn−1−2k(M)

⎞⎠ ,

i.e., the space, whose G-invariant part is known from Proposition 3.13.

Lemma 3.15. The image of F1
nΩ•,∗ under the Getzler map J : Ω•,∗ → C•,∗,

defined in Section 2.4, lies in F1
nC•,∗.
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Proof. Let U ⊂ Gp × M be an open set and let ω ∈ F1
nΩp,k(U). If k ≥ n

there is nothing to show. Let k < n. The projection of the image of J (ω) to
C•,∗(U)/F1

nC•,∗(U) is the part of J (ω) whose polynomial degree is zero. This is
zero, since the form degree of ω on the G part is positive (by the condition k < n),
and hence ω is mapped to zero in the quotient and hence to a positive degree
polynomial. �

Let DC(1, n) = Cone(Z⊕F1
nC•,∗ → C•,∗, (z, ω, η) �→ ω + η − z)[−1].

Lemma 3.16. The map of chain complexes of simplicial sheaves
J∗ : DGomi(n)G•×M → DC(1, n)G•×M

induces an isomorphism Ĥ∗
G(M,Z) → H∗(G• ×M,DC(1, n)).

Proof. The same arguments as given above show that H∗(G• × M,DC(1, n)) sits
in the same hexagon (12) as Ĥ∗

G(M,Z) and the induced maps on all corners form
the identity. �

We have an inclusion DC(n) → DC(1, n), which, combined with the isomorphism
of Lemma 3.16, induces a map

f : Ĥ∗
G(M,Z) → Ĥ∗

G(M,Z).

Theorem 3.17. f is an isomorphism in degree 0, 1, and 2 and surjective in higher
degrees.

Proof. This again follows from the hexagons, which coincide in degree 0, 1, 2. In
higher degrees, the sequence along the bottom is the same, and along the top one
has surjections. �

Remark 3.18. Michael Luis Ortiz discusses an idea of a definition of equivariant
differential cohomology in [28, pp. 7-9]. He gives a recipe for what to do for general
Lie groups, but does not make things precise. In particular he talks about differ-
ential forms on M ×G EG. As you will have noted, giving them a precise meaning
in which one can compare them with integral cohomology and the Cartan model is
one of the major lines in this article and found its final answer in this section.

On the other hand, there is a definition of Deligne cohomology for orbifolds by
Ernesto Lupercio and Bernardo Uribe in [24]. This includes the ‘action orbifold’
of G on M with objects M and morphisms G × M , whose nerve is our simplicial
manifold G• × M . Translating their definition into our language, one gets the
complex

Cone
(
Z⊕ Γ

(
·, (∂∗

1 )•Λ≥nT∨M
)∗ → Γ (·, (∂∗

1)•Λ∗T∨M) , (z, ω) �→ ω − z
)

[−1]

of cochain complexes of simplicial sheaves on G• × M , where Γ(·, E) denotes the
sheaf of local sections of the bundle E. This yields (for G compact) the hexagon

(Ωn−1(M))G�d
(
Ωn−2(M)G

) Ωn
cl(M,C)G

(Ωn−1
cl (M))G�d

(
Ωn−2(M)G

) Ĥn
G(M,Z) (Ωn

cl(M))G�d
(
Ωn−1(M)G

)
Hn−1

G (M,Cone(Z → Ω∗(·)G)) Hn
G(M,Z)

←

→
a

← →d

←

→←

→

←

→

← →R

←

�
I

←↩
→

← →
−β

← →
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In the case of finite groups, one has H∗
G(M,C) = Ωn

cl(M)G/dΩn−1(M)G; thus
this definition coincides with the others for finite groups. In the case of positive
dimensional Lie groups it is even less satisfactory than the definition of Gomi, as
there is not even equivariant complex cohomology at the left and the right ends.

4. Equivariant differential characteristic classes

4.1. Definitions. Let us restrict to compact groups G acting on the manifold and
on vector bundles. As rank n vector bundles admit a hermitian metric, they are
in one to one correspondence with principal U(n)-bundles. Thus any characteristic
form for vector bundles corresponds to an invariant polynomial P ∈ I∗(U(n)) (see,
e.g., [21, Corollary 5.13].

Let E → M be a G-equivariant vector bundle. Recall that a connection is a map

∇ : Ω0(M,E) → Ω1(M,E)

which satisfies a Leibniz rule

∇(fϕ) = df ∧ ϕ + f∇ϕ for f ∈ Ω0(M,C), ϕ ∈ Ω0(M,E).

Further, a connection ∇ extends uniquely to a C-linear map

∇ : Ω∗(M,E) → Ω∗+1(M,E),

called exterior connection, by imposing the sign respecting Leibniz rule

∇(ω ∧ ϕ) = dω ∧ ϕ + (−1)kω ∧∇ϕ for ω ∈ Ωk(M,C), ϕ ∈ Ω∗(M,E).

One observes that ∇ ◦ ∇ : Ω0(M,E) → Ω2(M,E) is C∞-linear and hence given
by left multiplication with an endomorphism valued 2-form, which is known as the
curvature operator R∇ ∈ Ω2(M,EndE). If the connection is G-invariant, then
there is another associated map.

Definition 4.1 (Definition 2.23 of [6]). Let ∇ be a G-invariant connection on the
G-vector bundle E . The moment map μ∇ ∈ Hom(g, ω0(M,End(E)))G is defined
by

μ∇(X) ∧ ϕ := ∇X�
M
ϕ + LE

Xϕ, ϕ ∈ ω0(M, E).

Here LE
X denotes the derivative

LE
Xϕ = d

dt

∣∣∣∣
t=0

exp(tX)∗ϕ.

From any invariant polynomial we obtain equivariant differential forms of the
G-invariant connection by

ω(∇) = P (R∇ + μ∇) ∈ ΩG(M).

Moreover, if ω is integral, i.e., has integral periods, then there is an integral equi-
variant characteristic class cω coinciding with the class of ω in complex cohomology.

Definition 4.2. A differential refinement of ω associates to every G-equivariant
vector bundle with connection (E,∇) on M a class ω̂(∇) ∈ ĤG(M ;Z) such that

R(ω̂(∇)) = ω(∇), I(ω(∇)) = cω(E),

and for every map f : M → M ′, we have f∗ω̂(∇) = ω̂(f∗∇).
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As the intersection of the kernels

ker(R) ∩ ker(I) = Hn−1
G (M,C)�Hn−1

G (M,Z)

is in general non-trivial, the differentially refined class ω̂(∇) can contain finer in-
formation than the pair (ω(∇), cω(E)). Thus it is a priori not clear that for a given
equivariant characteristic form, there is only one equivariant differential character-
istic class.

Theorem 4.3. An integral equivariant characteristic form admits a unique equi-
variant differential extension.

The line of arguments prove this assertion is (almost) the following: A simplicial
manifold model of the universal U(n)-bundle is given by (compare [14, Section 5])
the simplicial principal U(n)-bundle γ : NU(n)• → NU(n)•, with

NU(n)p = U(n)p+1,

∂i removes the i-th coefficient, and σi doubles the i-th coefficient. NU(n) = U(n)•×
pt and γ(g0, . . . , gp) = (g0g

−1
1 , . . . , gp−1g

−1
p ). As Ĥ2n

U(n)(pt,Z) = Hn(BU(n),Z), we
would like to define a map of simplicial manifolds G•×M → NU(n) classifying our
bundle and pull back the universal class together with a corresponding connection.
Now we can compare this connection with the one defined on our bundle and change
the differential characteristic class according to this.

Lemma 4.4. Let ∇ and ∇′ be two connections on the same bundle. Then

ω̂(∇) − ω̂(∇′) = a(ω̃(∇,∇′)).

Proof. Let ∇t denote the convex combination of ∇ and ∇′. Then by Proposi-
tion 3.8,

ω̂(∇) − ω̂(∇′) = i∗1ω̂(∇t) − i∗0ω̂(∇t)

= a

(∫
[0,1]×M/M

R(ω̂(∇t))

)

= a

(∫
[0,1]×M/M

ω(∇t)

)
= a(ω̃(∇,∇′)).

�

This lemma implies, in particular, that we are done if we have defined the refine-
ment for hermitian bundles with hermitian connection, since any connection can
by symmetrized (compare [6, Section 2.5]).

To construct the classifying map we will need an intermediate bundle, for which
one can easily write pullback maps to the given bundle and to the universal bundle.
Therefore we need to recall the following construction from [21, Section 4].

Let U = {Uα|α ∈ A} be an open cover of some G-manifold M . This induces a
simplicial cover of G• ×M : Define the simplicial index set A(p) = Ap+1 with face
and degeneracy maps given by removing respective doubling of the i-th element.
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Then define the simplicial cover U (p) = {U (p)
α }α∈A(p) inductively by

U (p)
α =

p⋂
i=0

∂−1
i

(
U

(p−1)
∂i(α)

)
,

where U
(0)
α = Uα for any α ∈ A(0) = A.

From this simplicial cover one obtains the simplicial manifold (G• ×M)U as

((G• ×M)U )p :=
∐

(α0,...,αp)

U (p)
α0

∩ · · · ∩ U (p)
αp

,

where the disjoint union is taken over all (p + 1)-tuples (α0, . . . , αp) ∈ (A(p))p+1

with U
(p)
α0 ∩ · · · ∩ U

(p)
αp �= ∅. The face and degeneracy maps are given on the index

sets (A(p))p+1 by removing, respectively doubling, the i-th index and on the open
sets by the corresponding inclusions composed with the i-th face and degeneracy
map of G• ×M .

Let π : E → M be a G-equivariant hermitian vector bundle with hermitian
connection ∇ and let B be the associated principal U(n)-bundle furnished with the
associated principal connection ϑ. From an open cover U of M we obtain the cover
π−1U of B, and thus the construction above yields a simplicial bundle

π : (G• ×B)π−1U → (G• ×M)U ,
and the commutative diagram

(G• ×B)π−1U G• ×B

(G• ×M)U G• ×M

←→ πU
←→

←→

←→

induced by the inclusions of the covering sets is a pullback, since the cover we take
on G• ×B is induced by π and U•.

Suppose the cover U = {Uα}α∈A of M trivializes B with trivialization
ϕα : Vα = π−1(Uα) → Uα × U(n)

and transition functions gαβ : Uα ∩ Uβ → U(n). Then there is an induced map

ψ : (G• ×B)π−1U → NU(n),
which is given on the intersection of p + 1 covering sets of Gp ×B,

V =
p⋂

j=0
V

(p)
αj

0,...,α
j
p
,

by
(g1, . . . , gp, x) �→ (ϕα0

0
(g1 . . . gpx), ϕα1

1
(g2 . . . gpx), . . . , ϕαp

p
(x)) ∈ U(n)p+1,

where, on the right-hand side, the maps ϕα are understood to be composed with
the projection to U(n).

Next, we want to define ψ : (G•×M)U → NU(n) such that ψ covers ψ. Therefore
we need some additional transition functions of the bundle. Define

hαβ : G×M ⊃ ∂−1
0 Uα ∩ ∂−1

1 Uβ → U(n)
(g,m) �→ (π2 ◦ ϕα(gx))(π2 ◦ ϕβ(x))−1,
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for any x ∈ π−1(m). Define ψ on

U =
q⋂

j=0
U

(p)
αj

0,...,α
j
p

by

(13) (g1, . . . , gp,m) �→ (hα0
0α

1
1
(g1, g2 . . . gpm),

hα1
1α

2
2
(g2, g3 . . . gpm), . . . , hαp−1

p−1α
p
p
(gp,m), ∗).

These maps combine to form the following commutative diagram of simplicial
manifolds:

G• ×B (G• ×B)π−1U NŪ(n)

G• ×M (G• ×M)U NU(n)

←→ π

←→ī ←→
ϕ̄

←→ ←→

←→i ←→
ϕ

Proposition 4.5. The map i induces an isomorphism

i∗ : Ĥn
G(M,Z) → Hn((G• ×M)U , i∗DC(n))

and isomorphisms between all corners of the hexagons (4) with the corresponding
corners of

Hn((G• ×M)U , i∗ Cone(C•,≥n → C•,∗)[−1]) Hn((G• ×M)U , i∗C•,≥n)

Hn−1
G (M,C) Hn((G• ×M)U , i∗DC(n)) Hn

G(M,C)

Hn−1
G (M,C/Z) Hn

G(M,Z)

←
→

a
← →

d+ι

←

→← →

←

→

← →R

←

�
I

←↩

→

← →
−β

← →

Proof. Recall that ‖i‖ : ‖(G•×M)U‖ → ‖G•×M‖ is a homotopy equivalence. The
short exact sequence of simplicial sheaves

0 → Cone(Z → C•,∗) → DC(n)G•×M → C•,≥n → 0

and the map i induce the following diagram with exact rows:

0 Hn−1
G (M,C/Z) Ĥn

G(M,Z) Ωn
G(M)cl Hn−1

G (M,C/Z)

0 Hn−1
G (M,C/Z) Hn((G• ×M)U , i∗DC(n)) Hn((G• ×M)U , i∗C∗,≥n) Hn−1

G (M,C/Z)

←→

←→ =

← →

←→ =

← →

←→ i∗

← →

←→ i∗ ←→ =

←→ ←→ ←→ ←→

Thus, by the five lemma, it is sufficient to show that

i∗ : Ωn
G(M)cl → Hn((NGM)U , i∗C•,≥n)

is an isomorphism. Observe that

Hn((NGM)U , i∗C•,≥n) = ker
(
d + ι : C0,n

(∐
Uα

)
→ C0,n+1

(∐
Uα

))
∩ ker

⎛⎝∂ : C0,n
(∐

Uα

)
→ C1,n

⎛⎝ ∐
α1,α2,β1,β2

U (1)
α1α2

∩ U
(1)
β1β2

⎞⎠⎞⎠ .
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Let (ωα) ∈ C0,n (
∐

Uα). The definition of the map ∂ by

m ∈ Uβ2

U
(1)
α1α2 ∩ U

(1)
β1β2

� (g,m)

gm ∈ Uα1

← →∂0

←

→
∂1

implies that ∂(ωα) = 0 is equivalent to

∂∗
0ωβ |U(1)

αβ

= ∂∗
1ωα|U(1)

αβ

.

Moreover, since e×(Uα∩Uβ) ⊂ ∂∗
1Uα∩∂∗

0Uβ = U
(1)
αβ , this equation implies that (ωα)

is the restriction of a global section ω ∈ C0,n(M), which is by the same equation
G-invariant. Hence ω ∈ ker(d + ι) = Ωn

G(M)cl. This proves the first claim.
The claim about the hexagon follows by the same argument, because the

‘de Rham’ sequence along the top is exact. �

One defines (compare [14, p. 94]) a connection ϑ̄ on NU(n) → NU(n): Let
ϑ0 ∈ Ω1(K, k) denote the unique connection of the trivial bundle K → pt, i.e.,

ϑ0(k) = Lk−1 : TkK → TeK = k.

Let
πi : Δp ×Kp+1 → K

denote the projection to the i-th coefficient, i = 0, . . . , p and ϑi = π∗
i ϑ0. Then we

define ϑ̄ on Δp × (NK)p by

ϑ̄ =
∑
i

tiϑi,

where (t0, . . . , tp) are barycentric coordinates on the simplex. ϑ̄|Δp×(NK)p is a
connection on Δp × (NK)p, as it is a convex combination of connections. It can
be seen easily from the definition that ϑ̄ is a simplicial Dupont 1-form. For more
details see also [21].

Let P ∈ I∗(U(n)) denote the polynomial and cP ∈ Hn(BU(n),Z) = Ĥ2n
U(n)(pt,Z)

denote the universal characteristic class corresponding to the integral characteristic
form ωP .

Definition + Proposition 4.6. The differential refinement is given by the for-
mula

ω̂(∇) = (i∗)−1(ϕ∗cP + a(ω̃P (i∗ϑ, ϕ̄∗ϑ0))).

This definition is independent of the chosen cover and trivializations and defines
the differential refinement of the integral characteristic form ωP .

Proof. We will prove the independence of the cover in three steps:

Step 1. Let U ′ = {U ′
β} be a refinement of the cover U ; i.e., for any β, there is some

α(β) such that U ′
β ⊂ Uα(β); let ϕ′

β = ϕα(β)|U ′
β
. The inclusion of the refinement
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yields a commutative diagram

G• ×B (G• ×B)π−1U′ NŪ(n)

G• × B (G• × B)π−1U NŪ(n)

G• ×M (G• ×M)U′ NU(n)

G• ×M (G• ×M)U NU(n)

←

→

⇐

⇐
←→ ī′ ← →

ϕ̄′

←

→

←

→ ←

→

⇐⇐
←→ ī ← →

ϕ̄

←

→⇐⇐
←→ i′ ← →

ϕ′

←

→ ⇐⇐

→

←

←→

i

← →
ϕ

→

←

from which the independence of the cover follows, because the direct pullback is
the same as the one factorized over the coarser cover.

Step 2. Take one cover U = {Uα}, with two different families of trivialization maps
ϕα, ϕ

′
α : π−1Uα → Uα ×G.

Then there is a family of maps ψα : Uα → G such that ψα(π(b)) · ϕα(b) = ϕ′
α(b)

for any b ∈ π−1Uα and any α.
The difference between the two definitions is

ϕ∗cP + a(ω̃P (i∗ϑ, ϕ̄∗ϑ0)) − ϕ′∗cP − a(ω̃P (i∗ϑ, ϕ̄′∗ϑ0))

= ϕ∗cP − ϕ′∗cP − a(ω̃P (ϕ̄∗ϑ0, ϕ̄′∗ϑ0)).

First assume each Uα is contractible. Then there is a homotopy ψ̃α : [0, 1]×Uα → G

such that i∗1ψ̃α = ψα and i∗0ψ̃α maps any point to e ∈ G. These homotopies induce
a homotopy

ϕ̃ : [0, 1] × (G• ×B)π−1U ′ → NU(n)
between ϕ̃0 = ϕ and ϕ̃1 = ϕ′, and one can calculate

ϕ∗cP − ϕ′∗cP = i∗0ϕ̃
∗cP − i∗1ϕ̃

∗cP

= a

(∫
[0,1]

R(ϕ̃∗cP )

)

= a

(∫
[0,1]

ϕ̃∗R(cP )

)

= a

(∫
[0,1]

ϕ̃∗
∫

Δ
P (ϑ0)

)

= a

(∫
[0,1]

∫
Δ
P (ϕ̃∗ϑ0)

)
= a(ω̃P (ϕ̄∗ϑ0, ϕ̄′∗ϑ0)).

In the last step, we use that ω̃P is independent of the path between the connections.
The case of non-contractible Uα follows by Step 1.

Step 3. Let (U , (ϕα)), (U ′, (ϕ′
β)) be two different covers with trivializations. Let

Ũ = {Uα ∩ U ′
β |α, β} be the common refinement on which there are two different

families of trivializations introduced by ϕ and ϕ′. Now the statement follows from
the previous steps.
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Next, we check the properties of the differential refinement:

I(ω̂(∇)) = I((i∗)−1(‖ϕ‖∗cP )) = cω(B)

and

R(ω̂(∇)) = R((i∗)−1(‖ϕ‖∗cP )) + a(ω̃(i∗ϑ, ϕ̄∗ϑ0))
= R((i∗)−1(‖ϕ‖∗cP )) + (d + ι)ω̃(i∗ϑ, ϕ̄∗ϑ0)
= (i∗)−1(ω(ϕ̄∗ϑ0) + ω(i∗ϑ) − ω(ϕ̄∗ϑ0))
= ω(∇).

Let (F, f) : (B,M) → (B′,M ′) be a pullback. As a trivialization of (B′,M ′)
induces a trivialization of (B,M), one has a commutative diagram

G• ×B (G• ×B)π−1f−1U NŪ(n)

G• ×B′ (G• ×B′)π−1U NŪ(n)

G• ×M (G• ×M)f−1U NU(n)

G• ×M ′ (G• ×M ′)U NU(n)

←

→

←→
←→ ← →

←

→

←

→ ←

→

⇐⇐
←→ ← →

←

→←→
←→ ← →

←

→ ⇐⇐→

←

←→ ← →

→

←

which clearly implies the pullback property.
The refinement is unique, since we used for our definition only properties the dif-

ferential refinement necessarily has, namely the pullback property and Lemma 4.4.

�

4.2. Multiplicative structures.

Definition 4.7 (Compare [6, Definition 3.94]). Let G be a compact Lie group. A
product on equivariant Deligne cohomology is the datum of a graded commutative
ring structure (denoted by ∪) on Ĥ∗

G(M,Z) for every G-manifold M such that

(1) f∗ : Ĥ∗
G(M,Z) → Ĥ∗

G(M ′,Z)is a homomorphism of rings for every smooth
map f : M ′ → M ,

(2) R : Ĥ∗
G(M,Z) → Ω∗

G(M)cl is multiplicative for all M ,
(3) I : Ĥ∗

G(M,Z) → H∗
G(M,Z) is multiplicative for all M , and

(4) a(α)∪x = a(α∧R(x)) for all α ∈ ω∗
G(M ;C)/ im(d+ ι) and x ∈ Ĥ∗

G(M,Z).

Proposition 4.8. There exists a unique product on equivariant Deligne cohomol-
ogy.

Proof. Uniqueness follows (almost) verbatim the same arguments as given by
[6, p. 60]: The difference between the two products

B = ∪′ − ∪ : Ĥp
G(M,Z) ⊗ Ĥ

q
G(M,Z) → Ĥ

p+q
G (M,Z)
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factorizes over a bilinear map

B̃ : Hp
G(M,Z) ⊗Hq

G(M,Z) → Hp+q
G (M,C/Z)

by the hexagon (4), since R ◦ B = 0 and B ◦ (a × id) = 0. The bilinear map B̃
corresponds to a map of Eilenberg-MacLane spaces

K(Z, p) ∧K(Z, q) → K(C/Z, p + q − 1),

which is homotopic to a constant map, as the smash product on the left-hand side
is p + q − 1-connected.

Existence: We will leave this to the reader. The idea is to copy the arguments
of [6, Section 3.4] but replace the de Rham d in the definition of the map on the
level of chain complexes [6, equation (29)] by the boundary map d̄ + ῑ + d + ι of
Getzler. �

Recall that the total equivariant differential Chern class is the sum of the equi-
variant differential Chern classes

ĉ(∇) = 1 + ĉ1(∇) + ĉ2(∇) + · · · ∈
⊕

n even
Ĥn

G(M,Z).

Proposition 4.9. The total equivariant differential Chern class satisfies a Whit-
ney sum formula; i.e., given two G-equivariant vector bundles (E,∇), (E′,∇) with
equivariant connection over the G-manifold M and letting ∇⊕∇′ be the Whitney
sum connection on E ⊕ E′,

ĉ(∇⊕∇′) = ĉ(∇) ∪ ĉ(∇′).

Proof. The proof consists of two steps: First we will prove the formula for the
classifying space, and afterwards we will show that the difference terms fit.

Since the U(n)-equivariant differential cohomology of a point equals in even
dimension the U(n)-equivariant integral cohomology of a point, the formula follows
from the non-differential Whitney sum formula and the compatibility of the cup
products.

Thus by construction of the equivariant differential characteristic classes, we only
have to check that the difference terms fit; i.e., the classifying maps of E,E′ and
E ⊕ E′ induce connections ∇0,∇′

0, and ∇0 ⊕∇′
0, for which

ĉ(∇0 ⊕∇′
0) = ĉ(∇0) ∪ ĉ(∇′

0)

holds by the pullback property of ĉ and the first step for the universal bundles.
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Denote the characteristic form of c by ω and the transgression form by ω̃. Now
calculate by applying the properties of the cup product:

ĉ(∇)∪ĉ(∇′)
= (ĉ(∇0) + a(ω̃(∇,∇0))) ∪ (ĉ(∇′

0) + a(ω̃(∇′,∇′
0)))

= ĉ(∇0 ⊕∇′
0) + a(ω̃(∇,∇0)) ∪ ĉ(∇′

0)
+ ĉ(∇0) ∪ a(ω̃(∇′,∇′

0)) + a(ω̃(∇,∇0)) ∪ a(ω̃(∇′,∇′
0))

= ĉ(∇0 ⊕∇′
0) + a(ω̃(∇,∇0) ∧R(ĉ(∇′

0)))
+ a(R(ĉ(∇0)) ∧ (ω̃(∇′,∇′

0))) + a(ω̃(∇,∇0) ∧R ◦ a(ω̃(∇′,∇′
0)))

= ĉ(∇0 ⊕∇′
0) + a(ω̃(∇,∇0) ∧ ω(∇′

0))
+ a(ω(∇0) ∧ (ω̃(∇′,∇′

0))) + a(ω̃(∇,∇0) ∧ (ω(∇′) − ω(∇′
0)))

= ĉ(∇0 ⊕∇′
0) + a(ω̃(∇,∇0) ∧ ω(∇′)) + a(ω(∇0) ∧ (ω̃(∇′,∇′

0)))
= ĉ(∇0 ⊕∇′

0) + a(ω̃(∇⊕∇′,∇0 ⊕∇′)) + a((ω̃(∇0 ⊕∇′,∇0 ⊕∇′
0)))

= ĉ(∇⊕∇′). �

5. Examples for equivariant differential cohomology

5.1. Free actions. Let the Lie group G act freely on the manifold M from the
left. Do equivariant differential cohomology groups make a difference between the
G manifolds M and G×M/G? As equivariant cohomology does not make one, the
question reduces to differential forms.

To discuss this, we collect the following statements.

Definition 5.1 (Definition 13.5 of [31]). The action is proper if the action map

G×M → M ×M, (g,m) �→ (gm,m)

is proper; i.e., the pre-image of any compact set is compact.

Theorem 5.2 (Theorem 13.8 of [31]). Suppose G acts properly on M . Then each
orbit G ·m is an embedded closed submanifold of M , with

Tm(G ·m) = {X�
M (m)|X ∈ g} = g

�
m.

Theorem 5.3 (Theorem 13.10 of [31]). Suppose that G acts properly and freely on
M . Then the orbit space M/G is a manifold, and the quotient map π : M → M/G
is a submersion.

Suppose the action is free and proper; thus M/G is a manifold. The quotient
map always induces injections

q∗ : Ωn(M/G) → Ωn(M)G

and

pr∗ : Ωn(M/G) → Ωn(G×M/G)G.
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These lead to two resolutions of Ω∗(M/G): The first one is given as the double
complex

...
...

...
...

Ωn(M/G) Ωn(M)G
(
g∨ ⊗ Ωn−1(M)

)G (
S2(g∨) ⊗ Ωn−2(M)

)G
. . .

Ωn+1(M/G) Ωn+1(M)G (g∨ ⊗ Ωn(M))G
(
S2(g∨) ⊗ Ωn−1(M)

)G
. . .

...
...

...
...

←→ ←→ ←→ ←→

←→
q∗

←→ d

←→ι

←→ d

←→ι

←→ d

←→

←→ d

←→
q∗

←→ d

←→ι
←→ d

←→ι

←→ d

←→

←→ d

whose total complex is the Cartan complex Ω∗
G(M), while the total complex of the

second resolution is Ω∗
G(G×M/G). The question now is: Are these two complexes

equivalent on the level of cycles? This is clearly true for zero forms as the two maps

C∞(M)G q∗←− C∞(M/G) pr∗−→ C∞(G×M/G)G

are isomorphisms. For higher degrees let h be a G-invariant Riemannian metric on
M . Then the tangent bundle

TM = g� ⊕
(
g�
)⊥

splits with respect to h. Moreover dqm :
(
g�m

)⊥ → Tq(m)(M/G) is an isomorphism
for any m ∈ M . Thus we have the following lemma, which shows the equivalence
in degree one.
Lemma 5.4. Let G act properly and freely on M . Then

0 → Ω1(M/G) q∗→ Ω1(M)G ι→
(
g∨ ⊗ Ω0(M)

)G → 0
splits.

Proof. Restriction to
(
g�
)⊥ ⊂ TM defines a map Ω1(M)G → Ω1(M/G) which is

left inverse of q∗. Thus it is a split. �
For the higher degrees, recall the following relation between exterior algebras.

Proposition 5.5 (Proposition 10 of [3, Ch. III, §7.7]). Let V,W be vector spaces.
Then there is a natural isomorphism of algebras

Λ∗(V ) ⊗ Λ∗(W ) → Λ∗(V ⊕W )
from the graded tensor product of the exterior algebras to the exterior algebra of
the direct sum.

We will now restrict to the case where the adjoint action of G on g is trivial.
This includes, in particular, the case of abelian Lie groups.

An element of Ω∗
G(G× (M/G)) is an invariant section of

S∗(g∨) ⊗ Λ∗
(
T∨
(
G×M�G

))
→ G×M�G,

which by the splitting of the cotangent space and Proposition 5.5 is a G-invariant
section of

S∗(g∨) ⊗ Λ∗ (pr∗1 T∨G) ⊗ Λ∗
(
pr∗2 T∨M�G

)
→ G×M�G.
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This is the same as a section of

S∗(g∨) ⊗ Λ∗ (g∨) ⊗ Λ∗
(
pr∗2 T∨M�G

)
→ M�G,

since the action of G on S∗(g∨) is trivial. Pulling this section back to M along the
quotient map yields a G-invariant section of

S∗(g∨) ⊗ Λ∗ (g∨) ⊗ q∗Λ∗
(
T∨M�G

)
→ M.

Composition with id⊗� ⊗
(
dq
∣∣∣(g�)⊥

)−1
turns this section into a G-invariant sec-

tion of

S∗(g∨) ⊗ Λ∗T∨M → M

and thus an element of Ω∗
G(M), because X�

gm = g(g−1Xg)�m = g ·X�
m. As any of

these steps may be done in the opposite direction, we have an isomorphism between
Ω∗

G(M) and Ω∗
G(G× (M/G)).

Thus for free proper actions of abelian groups, there is no difference between M
and G × (M/G) in equivariant differential cohomology. The easiest example for a
free proper action of a non-abelian Lie group on a manifold is the left multiplication
of S3 ⊂ H on S7 ⊂ H. We will leave this discussion to future research.

Let E → M be a G-equivariant vector bundle with free and proper G-action on
the base and the total space. Given a connection on ∇ on E, there is the question
whether this connection is a pullback from the quotient bundle

E E := E�G

M M := M�G.

←→
q̄

←→ ←→

←→
q

Clearly, if the connection is a pullback, then every equivariant differential charac-
teristic class ĉ(∇) must lie in the image of

q̃∗ : Ĥ(M,Z) → ĤG(M,Z),

where q̃ is the projection of the simplicial manifolds G• × M → {e}• × M̄ . In
particular, the connection must be G-invariant, and the moment map must vanish
(compare also [6, Section 2.2]).

Now turn the question the other way around: Assume that there is some col-
lection of equivariant differential characteristic classes for a connection on E → M
which all lie in the image of q̃∗. Does this imply that the connection descends to
the quotient bundle?

We want to make the following observations in order to answer this question:
Let ∇ be a connection on the equivariant complex vector bundle E → M of rank
n. Then the total equivariant Chern form is given by

R(ĉ(∇)) = det
(

1 + 1
2πi

R∇ + μ∇
)
.
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For any X ∈ g, this form induces a polynomial

PX(t) = det
(

1 + 1
2πi

R∇ + μ∇(tX)
)

= det
(

1 + 1
2πi

R∇ + tμ∇(X)
)

in t. If the total equivariant Chern form lies in the image of the quotient map, then
the degree of polynomial in t is zero.

In the case of R∇ = 0, tnPX( 1
t ) is exactly the characteristic polynomial of

μ∇(X), and hence all eigenvalues of μ∇(X) are zero if the total equivariant Chern
form lies in the image of the quotient map. In general, this does not imply that
μ∇(X) is zero, but if there is a metric on E, we can say more.

Let h be a hermitian metric on E and let ∇ be compatible with h. Then
E is in correspondence to a principal U(n)-bundle, and, as the Lie algebra u(n)
consists of anti-hermitian matrices, the image of μ∇(X) at any point of M is anti-
hermitian. The Jordan normal form of an anti-hermitian matrix is diagonal, because
the conjugate of an anti-hermitian matrix by a unitary one is anti-hermitian,

(U∗AU)∗ = U∗A∗U = −U∗AU,

and hence all 1’s in the first upper diagonal must vanish. Since an invariant con-
nection descends if and only if the moment map vanishes (compare [6, Problem
2.24]), we have proven the following proposition.

Proposition 5.6. Let (E, h) → M be a G-equivariant hermitian vector bundle,
such that the G-action is free and proper, and let ∇ be a G-invariant hermitian
connection on E, such that the curvature R∇ vanishes. Then ∇ descends to a
connection on

E�G → M�G
if and only if the total Chern form vanishes.

5.2. Conjugation action on S3. The manifold S3 ⊂ R4 has a group structure.
Recall that one defines on the vector space R4 a real (non-commutative) division
algebra, the quaternions, with three imaginary units i, j, k squaring to −1 and
satisfying ij = −ji = k. Now the space of unit quaternions is S3 and has an
induced multiplication. On the other hand, there is another description of the
3-sphere by the special unitary group of complex 2 × 2-matrices:

SU(2) =
{(

a −b̄
b ā

)∣∣∣∣a, b ∈ C, |a|2 + |b|2 = 1
}
.

The map (
a −b̄
b ā

)
�→ a + jb ∈ S3 ⊂ H

defines a group isomorphism between the two descriptions.
We want to investigate the conjugation action of S3 on itself. Therefore note the

following well-known fact (for a proof see, e.g., [20, Lemma 4.44]).

Lemma 5.7. Half the trace or the real part of the quaternion is an invariant
surjective mapping

1
2

tr : S3 → [−1, 1]
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which induces an isomorphism of the quotient S3
�SU(2) → [−1, 1]. The isotropy

group of any point besides 1 and −1 is isomorphic to S1.

Another helpful picture of S3 is obtained from stereographic projection with
projection point −1. In formulas this is expressed as

H ⊃ S3 � x = x0 + ix1 + jx2 + kx3 �→ 1
1 + x0

(x1, x2, x3) ∈ R3 ∪ {∞},

where 1 ∈ H is mapped to 0 ∈ R3 and −1 to ∞. Taking subsets S3 ⊂ H of fixed
real value x0, these are mapped to a 2-sphere of radius

√
1−x0
1+x0

. The conjugation
action acts transitively on each of these 2-spheres and leaves the midpoint and ∞
fixed.

1

i

j

k This figure shows the stere-
ographic projection of the 3-
sphere S3 \ {−1} to R3, filled
with 2-spheres. i, j, and k are the
imaginary units of the quater-
nions, which span the tangent
space at 0 ∈ R3.

The vector field in real di-
rection, discussed in the text,
points outward like the spines of
a hedgehog, perpendicular to the
corresponding 2-sphere, and its
length is the radius of this 2-
sphere.

Let f ∈ C∞(S3)S3 . It is clear that the map only depends on the real value or,
in the other picture, not on the point itself but only on the 2-sphere on which the
point is located. To be smooth, the function must depend smoothly on the real
value and the different direction must fit at 1 and −1. As the function has the same
value in any direction of 1, fitting smoothly means that all odd derivatives must
vanish. Thus

C∞(S3)S
3 ∼=

{
f ∈ C∞([−1, 1])

∣∣∣∣dkfdtk
(−1) = dkf

dtk
(1) = 0, for all odd k > 0

}
⊂ C∞([−1, 1],C).

Now, we are going to examine invariant differential forms of the conjugation action
on S3.

Let ω ∈ Ω1(S3)S3 . Let v be a tangent vector on one of the two fixed points. Then
there exists g ∈ S3, s.t. g−1vg = −v; hence an invariant one form must be zero on
the fixed points. As the real part of the quaternion is invariant under conjugation,
the vector field pointing in this direction projects to an invariant tangent field
on S3, which vanishes only at 1 and −1. In the R3 picture, this is the radial
vector field pointing outward everywhere. Let X now denote the normalization of
this vector field on S3 \ {1,−1}, and let ω0 denote the one form dual to X. Let
ω1 = ω − (ι(X)ω)ω0, where ι is the contraction of the form by the field. A priori
these forms are only defined on S3 \ {1,−1}, but as ω is zero at 1 and −1, we can
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extend (ι(X)ω)ω0 and ω1 by zero to obtain a smooth form on all of S3. Taking
any slice of S3 with fixed real part in (−1, 1), this is isomorphic to S2, and ω1
actually is a one form on each of these 2-spheres. The S1-isotropy found above
acts non-trivially on tangent vectors. Hence with the same argument as above
(rotating the tangent vector to minus itself) one sees that ω1 actually is zero. Thus
ω = (ι(X)ω)ω0. Let f be the integral of ι(X)ω ∈ C∞(S3)S3 ⊂ C∞([−1, 1]) over
the interval. Then ω = df and f ′(1) = f ′(−1) = 0 as ω vanishes at the fixed points.
Thus we have shown that

Ω1(S3)S
3

�
dC∞(S3)S

3 = 0.

Let ω ∈ Ω2(S3)S3 . Contracting with the radial field X as defined in the last
paragraph yields ι(X)ω = fω0, for some function f . As ι2 = 0, f = 0. Thus,
restricting ω to each of the levels of fixed real part in the open interval, one obtains
a multiple of the volume form on S2. At the fixed points one gets an SO(3)-
invariant 2-form on R3, since the adjoint action on the Lie algebra of SU(2) is how
one defines the double cover of SU(2) → SO(3). But there is no non-zero skew-
symmetric matrix commuting with the whole SO(3). Thus ω must vanish on the
fixed points. Moreover, as any invariant 1-form is exact,

Ω2(S3)S
3

�
dΩ1(S3)S

3 = Ω2(S3)S
3

∼=
{
f ∈ C∞([−1, 1])

∣∣∣∣f(−1) = f(1) = 0, d
kf

dtk
(±1) = 0, k odd

}
.

A volume form on the manifold induces an isomorphism Ω3(S3) ∼= C∞(S3). Since
the standard volume is invariant, we get an isomorphism for invariant forms and
functions. Let X ∈ s3 ⊂ H. Then

X�(m) = d

dt

∣∣∣∣
t=0

(1 + tX)m(1 − tX) = Xm−mX.

Thus for ω ∈ Ω3(S3)S3 ,

(14) ι(X�)ω(m) = ι(Xm−mX)ω(m) ω=Ad∗ ω= ι(Xm)ω(m)− ι(mX)Ad∗mω(m)
= ι(Xm)ω(m)− ι(m−1mXm)ω(m) = 0.

Moreover, d vanishes on top forms; hence the Cartan differential on Ω3(S3)S3 is
zero. As S3 has empty boundary,∫

S3
: dΩ2(S3)S

3 → C

is the zero map by Stokes’ theorem. Thus

Ω3(S3)S
3

�
dΩ2(S3)S

3 → C, ω �→
∫
S3

ω

is a well-defined injective homomorphism. From the calculation of the cohomology
below, we see that it is surjective.

What is the classical equivariant cohomology of the conjugation action of S3 with
values in R ∈ {Z,C,C/Z}? Taking the simplicial manifold model for ES3 ×S3 S3

and a cellular resolution with cell structure on S3 given by one zero cell correspond-
ing to the neutral element of S3 and one three cell, we find that all simplicial maps
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are cellular and we obtain the following double complex with the cellular resolution
horizontally to the right and the simplicial complex in vertical direction downwards
(compare page 8247):

S3 R 0 0 R 0 . . .

S3 × S3 R 0 0 R2 0 . . .

(S3)2 × S3 R 0 0 R3 0 . . .

(S3)3 × S3 R 0 0 R4 0 . . .

(S3)4 × S3 R 0 0 R5 0 . . .

...
...

...
...

...
...

←→

←→ 0

←→

←→

←→

←→

←→

←→ ∂(0)

←→

←→

←→

←→ 1

←→

←→

←→

←→

←→

←→ ∂(1)

←→

←→

←→
←→ 0

←→

←→

←→

←→

←→

←→ ∂(2)

←→

←→

←→

←→ 1

←→
←→

←→

←→

←→

←→ ∂(3)

←→

←→

←→

←→ 0

←→

←→

←→
←→

←→

←→

←→

←→

The R in the 0-column corresponds to the zero cell, and the Rk in the 3-column
corresponds to the k 3-cells in (S3)×k. The 3-cells in S3 × S3 are S3 × {e} and
{e}×S3 and in S3×S3×S3 are S3×{e}×{e},{e}×S3×{e}, and {e}×{e}×S3. One
calculates directly for the conjugation action that ∂(0) = 0 and ∂(1)(a, b) = (0, 0, b),
where the i-th entry corresponds to the i-th cell. Hence we obtain

Hk
S3(S3, R) =

{
R k = 0, 3, 4,
0 k = 1, 2

and can interpret this geometrically: the third cohomology is generated by the 3-
cell in S3, and the fourth cohomology is generated by the ‘acting’ 3-cell S3 ×{e} ⊂
S3 × S3.

Now the next proposition follows, in the main, by applying the hexagons (12)
and (4).

Proposition 5.8. For the conjugation action of the 3-sphere S3 = SU(2) on
itself, we have

Ĥn
S3(S3,Z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z n = 0,
C∞(S3)S3

/Z n = 1,
0 n = 2,
Ω2(S3)S3 ⊕ ZdvolS3 ⊂ Ω3(S3)S3

n = 3,
C/Z⊕ Z n = 4,
Hn

S3(S3,Z) n ≥ 5,
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and

Ĥn
S3(S3,Z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z n = 0,
C∞(S3)S3

/Z n = 1,
0 n = 2,
Ω2(S3)S3 ⊕ ZdvolS3 ⊂ Ω3(S3)S3

n = 3,
C/Z⊕ Z⊕ Ω1(S3)S1

/C∞(S3)S1
n = 4.

Proof. For Ĥn
S3(S3,Z), the only open question is the case n = 4. There one obtains

a short exact sequence 0 → C/Z → Ĥ4
S3(S3,Z) → Z → 0 from the hexagon. This

sequence splits, because C/Z is an injective abelian group.
In the case of Ĥ4

S3(S3,Z) one has the following hexagon from (4):
(15)

C⊕ ((s3)∨ ⊗ Ω1(S3))S3

�
d
(
((s3)∨ ⊗ Ω0(S3))S3

) ((s3)∨ ⊗ Ω2(S3))S3 ⊕ S2
(
(s3)∨ ⊗ Ω0(S3))S3

)
cl

C Ĥ4
S3(S3,Z) C

C/Z Z

←

→
a

← →
0⊕(d+ι)

←

→←

→

←

→

←

→R

←

�
I

←↩

→

← →0 ←

→

As discussed above s3 = Ri + Rj + Rk ⊂ H and S3 acts transitively on the unit
sphere of this space. Moreover, the subgroup of S3, which leaves i ∈ s3 invariant,
is exactly S1 ⊂ C ⊂ H. Hence((

s
3)∨ ⊗ Ωk

(
S3))S3

∼= Ωk
(
S3)S1

(
ω : s3 → Ωk

(
S3)) �→ ω(i),

and, since the first and second de Rham cohomology of S3 vanish, averaging over
the S1 implies that d : Ω1(S3)S1

/dC∞(S3)S1 → Ω2
cl(S3)S1 is an isomorphism.

Further, let

(ω, f) ∈
((

(s3)∨ ⊗ Ω2(S3)
)S3

⊕
(
S2((s3)∨) ⊗ Ω0(S3)

)S3)
cl
,

i.e., dω = 0 and df = −ιω. Then ω = dη for one and only one

η ∈ (s3)∨ ⊗ Ω1(S3)S
3

�
d

(((
s
3)∨ ⊗ Ω0 (S3))S3)

and df = −ιdη. On the other hand, f is given by a symmetric 3 × 3 matrix of
smooth functions on S3: ⎛⎝fii fij fik

fji fjj fjk
fki fkj fkk

⎞⎠ ,

and this matrix is determined, up to a constant matrix denoted by A, by the form
η. By the transitive action of S3 on the Lie algebra, it is clear that the information
of the matrix is contained in fii and fij . The conjugation by the element 1+k√

2 ∈ S3

translates the pair (i, j) to −(j, i). Hence fij = −Ad∗1+k√
2
fij . Thus the off-diagonal

terms of the symmetric matrix A must vanish, and hence A must be a multiple of
the identity matrix.
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Thus, we have described an isomorphism

C⊕ Ω1(S3)S
1

�
C∞(S3)S

1 →
((

(s3)∨ ⊗ Ω2(S3)
)S3

⊕
(
S2((s3)∨) ⊗ Ω0(S3)

)S3)
cl

(A, η) �→ (f, ω).

Applying this isomorphism, the hexagon (15) changes to

Ω1(S3)S1

�C∞(S3)S1 Ω1(S3)S1

�C∞(S3)S1 ⊕ C

Ĥ4
S3(S3,Z) C

C/Z Z

←↩ →
a

←↩ →id

←

→

← →R

←

�
I

←↩

→

← →0

←

→

where again the top line, the bottom line, and the diagonals are exact. The map a
is injective because the inclusion in the top line factors as R ◦ a. �

5.3. Actions of finite cyclic groups on the circle. Let Cp = Z/pZ denote
the cyclic group with p elements. There is an action of Cp on any odd sphere
S2n−1 ⊂ Cn, where a fixed generator acts by multiplication with e

1
p2πi. This

diagonal action is also unitary on the infinite-dimensional separable Hilbert space
l2(N,C) and hence induces an action on the unit sphere S∞. The inclusions of Cn’s
as first coefficients induce equivariant inclusions

S1 → S3 → · · · → S∞.

The sum of the tangent bundle and the normal bundle of S1 ⊂ C is a complex line
bundle, TS1⊕N ∼= S1×C, which we equip with the connection ∇, whose associated
parallel transport respects the decomposition in tangent and normal space. Hence,
the holonomy once around the circle equals 2π, thus is trivial. The sphere bundle
(with respect to the standard metric) of TS1 ⊕ N is the trivial S1 bundle on S1

with the S1-invariant connection. Now we have a pullback diagram of bundles with
connection with equivariant maps(

S1 × S1,∇
)

H = S3 ×S1 S1 S∞

S1 S3 S∞/S1.

←→

←→

←→
←→

←→

← →
f ← →

Moreover the first Chern class c1(S∞ → S∞/S1) ∈ H2(S∞/S1) = H2(BS1) is a
generator. Now for Ĥ2

Cp
(S3,Z) we have the diagram

Ĥ2
Cp

(S3,Z)

H1
Cp

(S3,C/Z) H2
Cp

(S3,Z).

←

→
I

←↩
→

← →
−β

As the first and second cohomologies are torsion, the Bockstein is an isomorphism,
given by multiplication with p. As the connection on H is flat, ĉ1(H) actually is a
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class in H1
Cp

(S3,C/Z). Let the cycle au =
[
0, 1

p

]
⊂ R/Z ∼= S1 be a fundamental

domain of the Cp action on S1. Evaluation at f(au) induces the isomorphism
H1

Cp
(S3,C/Z) →

(
1
pZ
)
/Z under which c1(H) is mapped to 1

p . Pulling back the
class along f shows that

ĉ1(TS1 ⊕N) = 1
p
∈ C/Z.

A finer analysis shows that the bundle S1 × S1 → S1, where Cp acts by multipli-
cation with e

q
p2πi on the fiber and e

1
p 2πi on the base space, has first equivariant

differential Chern class q
p ∈ C/Z. One may interpret this as a measurement of

holonomy along the fundamental domain.

5.4. G-representations. In this section, we want to investigate actions of Lie
groups on Rn. This will lead to some implications to equivariant immersions.
Equivariant immersions will be a subject of further investigation. To generalize
the well-known methods of characteristic classes applied to immersion, one has, in
particular, to define multiplicative structures in equivariant differential cohomology
and generalize the Whitney sum formula.

An orthogonal representation of the Lie group G on Rn (with the standard
metric) is given by a map ho : G → O(n). This induces an action on the tangent
bundle (TRn,∇) = (Rn × Rn, d) with the trivial connection. As d2 is zero, the
curvature vanishes; i.e., r∇ = 0. But since the trivialization of the tangent bundle
is not an equivariant trivialization, the moment map will not vanish in general:

μ∇(X)ϕ(m) = dϕm(X�) + d

dt

∣∣∣∣
t=0

(ho(exp(tX))ϕ)(ho(exp(−tX))m)

= dϕm(X�) + dho(X)ϕ(m) − dϕm(X�)
= dho(X)ϕ(m).

Hence for any equivariant differential characteristic class ĉ with corresponding
invariant polynomial P ∈ I∗(O(n)), one has

R(ĉ(G � Rn)) = P (μ∇ + R∇) = P (dho) ∈ S∗(g∨) ⊗ Ω0
cl(Rn) = S∗(g∨).

In particular, the characteristic form (and hence the class) will not vanish in
general for this flat bundle.

5.5. Towards obstruction to immersions? A major application of characteris-
tic classes in the non-equivariant case is given by obstructions to immersions – more
precisely, the characteristic classes give lower bounds to the minimal codimension
of an immersion. In the world of classical characteristic classes this can be found,
e.g., in [26, Theorem 4.8]). Differential characteristic classes apply for a result that
conformal immersions have a stronger bound for the minimal codimension than
smooth immersions (see [25] and [11, §6] for the original work and [27] for a partly
strengthened version).

The arguments therefore go as follows: Let M be a (Riemannian) manifold and
let f : M → Rn be an (isometric) immersion. Then there is a normal bundle
NM → M such that

TM ⊕NM = f∗TRn.
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Since the Chern classes on the right-hand side vanish, the total Chern class of
NM must be the inverse (with respect to the cup product) of TM . This implies
restrictions to the values of these classes. Moreover, in the Riemannian case, the
Levi-Civita connection on M is compatible with the pullback connection ∇f of the
trivial connection on Rn to TM ⊕ NM . This implies similar statements for the
differentially refined characteristic classes of the Riemannian connections.

More explicitly John Millson calculates the first differential Pontryagin class
of some lens spaces and shows that these do not immerse conformally into Rn

with certain codimension where smooth immersions exist. It is, with our theory,
straightforward to restate these examples for the lens space action of a finite cyclic
group on the 3-sphere, which should be immersed into a trivial representation.
It is subject of further research to study equivariant conformal immersions into
non-trivial representations.
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(French), Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Mas-
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