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UNIVERSALITY OF THE NODAL LENGTH OF BIVARIATE

RANDOM TRIGONOMETRIC POLYNOMIALS

JÜRGEN ANGST, VIET-HUNG PHAM, AND GUILLAUME POLY

Abstract. We consider random trigonometric polynomials of the form

fn(x, y) =
∑

1≤k,l≤n

ak,l cos(kx) cos(ly),

where the entries (ak,l)k,l≥1 are i.i.d. random variables that are centered with
unit variance. We investigate the length �K(fn) of the nodal set ZK(fn) of
the zeros of fn that belong to a compact set K ⊂ R2. We first establish
a local universality result, namely we prove that, as n goes to infinity, the
sequence of random variables n �K/n(fn) converges in distribution to a uni-
versal limit which does not depend on the particular law of the entries. We
then show that at a macroscopic scale, the expectation of �[0,π]2(fn)/n also

converges to an universal limit. Our approach provides two main byproducts:
(i) a general result regarding the continuity of the volume of the nodal sets
with respect to C1-convergence which refines previous findings of Rusakov
and Selezniev, Iksanov, Kabluchko, and Marynuch, and Azáıs, Dalmao, León,
Nourdin, and Poly, and (ii) a new strategy for proving small ball estimates in
random trigonometric models, providing in turn uniform local controls of the
nodal volumes.
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1. Introduction

The study of nodal sets associated to various kinds of random functions is a cen-
tral topic of probability theory, at the crossroad of various domains of mathematics
and physics such as linear algebra, number theory, geometric measure theory, or
else quantum mechanics or nuclear physics, just to name a few. In this context,
universality results refer to asymptotic properties of these random nodal domains,
which hold regardless of the nature of the randomness involved. Establishing such
universal properties for generic zero sets allows one to manage what would oth-
erwise be inextricable objects, which explains the tremendous importance of this
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particular area of research. As such, the literature on this topic is huge, and we
refer to the introduction of [TV14] and the references therein for a general overview.

When the random functions under consideration are multivariate, the zeros are
no longer isolated points but instead random curves/surfaces/manifolds whose vol-
ume is, among others, a natural quantity of interest. Ranging from algebraic mani-
folds to nodal lines of random eigenfunctions of Laplace–Beltrami operators on tori
or spheres, this topic has very recently attracted a lot of attention. Nonexhaustively,
we refer for instance to [SZ99,GW16, Let16a, Let16b] regarding random algebraic
manifolds and to [RW08,ORW08,Wig10,NS10,FLL15,MPRW16] regarding random
eigenfunctions. Nevertheless, in each situation considered in the above references,
the underlying randomness emerges from Gaussian distribution and there actually
seem to be no results dealing with the dependency of the studied phenomena on the
particular nature of the randomness. One reason possibly explaining the lack of re-
sults of universality in multivariate frameworks is that most techniques successfully
used in univariate settings, such as complex analysis tools or counting the changes
of sign, seem hardly extendable to higher dimensions. For instance, to the best
of our knowledge, there is no simple analogue in C

2 of the Jensen formula which
plays a central role in universality questions for univariate algebraic polynomials;
see [TV14]. To the contrary, we point out the fact that whatever the dimension is,
a Kac–Rice formula still holds and allows one to manage remarkably well the case
of absolutely continuous random fields. In this article, we investigate the natural
question of asymptotic universality of volumes in the framework of bivariate ran-
dom trigonometric polynomials with random coefficients that are only assumed to
be i.i.d and standardized. Let us describe our model in detail.

Let (ak,l)k,l≥1 be a sequence of independent and identically distributed random
variables whose common law satisfies E(ak,l) = 0 and E(a2k,l) = 1. We consider the

random function fn : R2 → R and its renormalized analogue Fn defined as

(1.1) fn(x, y) =
∑

1≤k,l≤n

ak,l cos(kx) cos(ly), (x, y) ∈ R
2,

(1.2) Fn(x, y) :=
1

n
fn

(x
n
,
y

n

)
=

1

n

∑
1≤k,�≤n

ak,� cos

(
kx

n

)
cos

(
�y

n

)
.

We denote by ZK(f) the zeros set of a function f in a compact set K ⊂ R2 and by
�K(f) the length or 1-dimensional Hausdorff measure of ZK(f) (provided that f is
sufficiently nice and nondegenerate to ensure its existence):

�K(f) := |ZK(f)|, where ZK(f) := {(x, y) ∈ K ⊂ R
2, f(x, y) = 0}.

Our first main result is the following local universality result which states that,
at a microscopic scale, the length of the nodal set converges in distribution to a
universal limit.

Theorem 1 (Local universality, Theorem 4 below). For any fixed compact K ⊂ R
2,

the sequence of random variables (�K(Fn))n≥1 converges in distribution, as n tends
to infinity, to an explicit random variable whose law is independent of the particular
law of the entries (ak,l)k,l≥1.

In comparison with the recent work [IKM16] which uses rather complex analysis
and the Hurwitz Theorem, we actually show that the sole C1-convergence is enough
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Figure 1. A realization of the random nodal set ZK(fn) for K =
[0, 2π]2, n = 20, with, from left to right, Bernoulli, Gaussian, and
centered exponential entries.

to ensure local universality. Besides, even if stated here in dimension two, our re-
sult holds in any finite dimension. Nevertheless, in [IKM16], a much wider class of
distributions is considered, englobing domains of attraction of stable distributions.
The article [ADL15] provides local universality for some families of absolutely con-
tinuous distributions which is an unnecessary assumption but actually entails the
stronger result that all moments converge towards the corresponding moments of
the (moment determined) target.

From the above local universality result and provided explicit moment controls,
we can then deduce the following global universality result which states that, prop-
erly nomalized, the expectation of the length of the full nodal set in the square
[0, π]2 converges to a universal constant.

Theorem 2 (Global universality, Theorem 8 below). Whatever the law of the
entries (ak,l)k,l≥1, as n tends to infinity, we have

lim
n→+∞

E[�[0,π]2(fn)]

n
=

π2

2
√
3
.

Remark 1. Due to the symmetry and periodicity of the trigonometric polynomials
fn, we then have limn→+∞ n−1

E[�[0,2π]2(fn)] = 2π2/
√
3, and our proof actually

establishes that for any compact set K being a finite union of rectangles:

lim
n→+∞

E[�K(fn)]

n
=

Vol(K)

2
√
3

.

With a standard approximation procedure, one can then deduce that the latter con-
vergence holds for any compact setK with nonempty interior and smooth boundary.

Remark 2. By choosing the trigonometric polynomials fn of the form given by
equation (1.1), we deliberately choose to work in a nonstationary framework. Let
us stress here that our methods and results naturally extend to stationary cases,
for instance when the trigonometric polynomials are of the form∑

1≤k,l≤n

ak,l cos(kx+ ly) + bk,l sin(kx+ ly),

where ak,l and bk,l are independent i.i.d. sequences and where the computations
are actually simpler than the ones considered here.
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Figure 2. A realization of the nodal set Z[0,2π]2(fn) for a trigono-
metric polynomial of degree n = 100 and with symmetric Bernoulli
coefficients.

Before giving the plan of the paper, let us say a few words concerning the univer-
sality of the mean number of real roots of univariate random trigonometric polyno-
mials. It has been recently established in full generality in [Fla16], and in [AP15]
under more restrictive conditions on the coefficients but with some possible control
of the remainder in terms of Edgeworth expansions. The strategy of the proof in
[Fla16] artfully combines a careful investigation of the number of changes of signs
together with accurate small ball estimates obtained by adapting to this framework
the method of Ibragimov and Maslova [IM71]. Nevertheless, such a strategy faces
intricate obstructions in higher dimensions, first of all, investigating the number of
changes of sign is no longer suitable. Secondly, relying on the celebrated Crofton
formula, one might try to get back to the univariate case by studying only the zeros
of our bivariate polynomials when restricted to random lines. However, such pro-
jections are no longer polynomials when the lines have an irrational slope. In order
to avoid such heavy complications, here we follow a completely different path which
consists of first establishing the local universality and next extending it to global
universality via accurate controls of moments of local nodal lengths. These controls
rely on suitable small ball estimates which do not follow the Ibragimov–Maslova
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method, which seemed to us hard to adapt here, but instead exploit the particular
ergodic properties of sequences of type {kx}k≥1 mod(π).

The plan of the paper is the following. The next section, Section 2, is devoted to
the proof of Theorem 1 concerning local universality. Its first subsection, Subsection
2.1, is dedicated to the C1-convergence of the rescaled trigonometric polynomials
Fn towards a nondegenerate Gaussian field, whereas Subsection 2.2 deals with the
(deterministic) continuity of the volumes of nodal domains with respect to C1-
convergence on compact sets. The last two results are combined in Subsection 2.3
to deduce the announced microscopic universality. The proof of Theorem 2 on
global universality is then given in Section 3. More precisely, Subsection 3.1 deals
with the Gaussian case, where an exact computation of the nodal length can be
performed thanks to the celebrated Kac–Rice formula. Then, in Subsection 3.2, we
derive a small ball estimate, from which we deduce a uniform moment control of
the local lengths. Together with the local universality, this moment control allow
us to conclude in Subsection 3.3. For the sake of clarity, we give below a concise
view of our proof strategy.

Figure 3. Plan of the proof of Local/Global Universality

2. Local universality

In this section, we give a detailed proof of Theorem 1 on the local universality
of the nodal length, i.e., we show that, at the microscopic scale, the law of the
nodal length of the bivariate random trigonometric polynomials converges to a
universal limit as their degree tends to infinity, regardless of the particular law of
their coefficients.

2.1. A limit Gaussian field. Let us first remark that, up to a scale factor, the
set of zeros of the original random trigonometric polynomial fn defined by equation
(1.1) naturally identifies with the set of zeros of its rescaled analogue Fn defined
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by equation (1.2). But the advantage of considering the function Fn instead of fn
is that for any fixed compact K ⊂ R2 and as n goes to infinity, the random field
(Fn(x, y))(x,y)∈K converges in law, with respect to the C1 topology, to an explicit
smooth Gaussian field (F∞(x, y))(x,y)∈K .

Proposition 1. For any fixed compact K ⊂ R2, as n goes to infinity, the renormal-
ized random field (Fn(x, y))(x,y)∈K converges with respect to the C1 topology on K to
a Gaussian field (F∞(x, y))(x,y)∈K whose covariance is given by ρ∞((x, y), (x′, y′))
:= E[F∞(x, y)F∞(x′, y′)]:

ρ∞((x, y), (x′, y′)) =

∫ 1

0

∫ 1

0

cos(sx) cos(sx′) cos(ty) cos(ty′)dsdt

=
1

4
(sinc(x+ x′) + sinc(x− x′)) (sinc(y + y′) + sinc(y − y′)),

where sinc(x) := sin(x)/x if x �= 0 and sinc(0) := 1 by convention.

Proof. Here we use the characterization of the C1-convergence given in Theorem 2
and Remarks 2 and 3 of [RS01]. The convergence of finite-dimensional marginals
is a direct consequence of the standard central limit theorem for independent, non-
identically distributed random variables. The covariance function of the limit is
obtained as the limit of the two-dimensional Riemann sums

E[Fn(x, y)Fn(x
′, y′)] =

1

n2

∑
1≤k,�≤n

cos

(
kx

n

)
cos

(
�y

n

)
cos

(
kx′

n

)
cos

(
�y′

n

)
.

Moreover, if ∂1 and ∂2 denote the partial derivatives in the x and y components, and
if we set Dn := E

[
|Fn(x, y)− Fn(x

′, y′)|2
]
, D1

n := E
[
|∂1Fn(x, y)− ∂1Fn(x

′, y′)|2
]
,

and D2
n := E

[
|∂2Fn(x, y)− ∂2Fn(x

′, y′)|2
]
, for all (x, y), (x′, y′) ∈ R2 we have

Dn =
1

n2

∑
1≤k,�≤n

∣∣∣∣cos
(
kx

n

)
cos

(
�y

n

)
− cos

(
kx′

n

)
cos

(
�y′

n

)∣∣∣∣
2

≤ 2

n2

∑
1≤k,�≤n

∣∣∣∣cos
(
kx

n

)
− cos

(
kx′

n

)∣∣∣∣
2

+

∣∣∣∣cos
(
�y

n

)
− cos

(
�y′

n

)∣∣∣∣
2

≤

⎛
⎝ 2

n

∑
1≤k≤n

(
k

n

)2
⎞
⎠ ||(x, y)− (x′, y′)||2 ≤ 2 ||(x, y)− (x′, y′)||2.

In the same way, we have

D1
n =

1

n2

∑
1≤k,�≤n

k2

n2

∣∣∣∣sin
(
kx

n

)
cos

(
�y

n

)
− sin

(
kx′

n

)
cos

(
�y′

n

)∣∣∣∣
2

≤ 2

n2

∑
1≤k,�≤n

k2

n2

(∣∣∣∣sin
(
kx

n

)
− sin

(
kx′

n

)∣∣∣∣
2

+

∣∣∣∣cos
(
�y

n

)
− cos

(
�y′

n

)∣∣∣∣
2
)

≤

⎛
⎝ 2

n

∑
1≤k≤n

k4

n4

⎞
⎠ ||(x, y)− (x′, y′)||2 ≤ 2 ||(x, y)− (x′, y′)||2,
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and the exact same computation yields D2
n ≤ 2 ||(x, y)− (x′, y′)||2. Together with

the convergence of finite-dimensional marginals, the three last estimates provide
the desired tightness criterion ensuring the convergence in the C1 topology. �

As noticed in Remark 2 in the introduction, here we consider random trigono-
metric polynomials in a nonstationary framework. To be able to deal with this
nonstationarity in our approach of global universality at the end of the paper, we
need to slightly reinforce the above convergence result by establishing a kind of
uniformity in space. This is the object of the next proposition.

Proposition 2. For any 0 < a < b < 1 and any sequence of couples of integers
(pn, qn) in the square [an, bn]2, the stochastic process (Gn(x, y))(x,y)∈[0,π]2 defined by

Gn(x, y) := Fn(pnπ + x, qnπ + y), (x, y) ∈ [0, π]2,

converges in distribution, as n goes to infinity, in the space C1([0, π]2) towards a
stationary Gaussian field G∞ of covariance

ρ((x, y), (x′, y′)) :=
1

4
sinc(x− x′) sinc(y − y′).

Proof. First of all, the tightness criterion used in the proof of Proposition 1 applies
in the same way since the final bound is expressed only in terms of ‖(x, y)−(x′, y′)‖22
so that pn and qn play no role here. Thus, one is only left to consider the convergence
of the covariances. Setting

ρn(x, x
′, p) :=

1

n

∑
1≤k≤n

cos

(
k

n
(x+ pπ)

)
cos

(
k

n
(x′ + pπ)

)
,

we have E [Fn(pnπ + x, qnπ + y)Fn(pnπ + x′, qnπ + y′)] = ρn(x, x
′, pn)ρn(y, y

′, qn).
By symmetry, it is enough to investigate the first factor, which can be rewritten as

ρn(x, x
′, pn) =

1

2n

∑
1≤k≤n

cos

(
k

n
(x+ x′ + 2pnπ)

)
+

1

2n

∑
1≤k≤n

cos

(
k

n
(x− x′)

)
.

The second term is a Riemann sum converging to the desired sine cardinal, whereas
the first sum is managed by a direct computation to obtain the inequality

1

n

∣∣∣∣∣∣
∑

1≤k≤n

cos

(
k

n
(x+ x′ + 2pnπ)

)∣∣∣∣∣∣ ≤
1

n

1∣∣sin (x+x′

2n + pnπ
n

)∣∣ .
The right-hand side of this last equation goes to zero as n goes to infinity. Indeed,
on the one hand, (x+x′)/2n goes to zero as n goes to infinity, whereas on the other
hand, dist (pn/n,Z) = mink∈Z|k − pn/n| remains uniformly bounded from below,
hence the result. �

Using the same arguments, one can moreover establish the following convergence
result which will also be used at the end of proof of the global universality.

Proposition 3. Let (pn, qn) be a couple of integers as in Proposition 2; then the
random field F∞(pnπ + ·, qnπ + ·) converges in distribution in the C1 topology to-
wards G∞.

Let us go back to the convergence of the random field (Fn(x, y))(x,y)∈K in a fixed

compact K ⊂ R2 and establish that the limit Gaussian field (F∞(x, y))(x,y)∈K is
nondegenerate in the following sense.
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Lemma 1. The limit Gaussian field F∞ obtained in Proposition 1 is nondegenerate
in the sense that, almost surely, we have

∇(x,y)F∞ �= 0 whenever F∞(x, y) = 0.

Proof. Let us denote by A := {x = 0} ∪ {y = 0} the axes of R2 and consider a
compact set K ⊂ R2\A. The fact that the field F∞ is nondegenerate on K is a
consequence of the Bulinskaya Lemma; see, e.g., Proposition 6.11 of [AW09]. The
only delicate point to check is that the Gaussian vector V = (F∞, ∂1F∞, ∂2F∞)
admits a uniformly bounded density on K. A necessary and sufficient condition
ensuring this fact is that the determinant of the covariance matrix ΓV of V is
stricly positive on the compact K, and thus uniformly bounded from below. The
covariance matrix ΓV of V is a Gram matrix; namely, if 〈, 〉 denotes the standard
Hilbert scalar product in L2([0, 1]), we have

ΓV =

⎛
⎝ 〈f, f〉 〈f, g〉 〈f, h〉

〈f, g〉 〈g, g〉 〈g, h〉
〈f, h〉 〈g, h〉 〈h, h〉

⎞
⎠ ,

where

f(s) := cos(sx) cos(sy), g(s) := −s sin(sx) cos(sy), h(s) := −s cos(sx) sin(sy).

The determinant of this Gram matrix vanishes if and only if the above functions of
s are proportional, which only occurs on the axes {x = 0} or {y = 0}, and hence
the result. Let us now consider the case of the axes. Let us first remark that the
random variable F∞(0, 0) is a standard Gaussian variable so that F∞(0, 0) �= 0
almost surely. Next, on the axis {x = 0, y �= 0}, the limit process (F∞(0, y))y∈R

is nothing but the limit Gaussian process associated to the univariate trigonometic
polynomials

Fn(0, y) =
1√
n

∑
1≤�≤n

b� cos

(
�y

n

)
,

where the variables b� =
1√
n

∑n
k=1 ak,� are independent and identically distributed,

their common law being centered and with unit variance. As above, the covariance
matrix of (F∞(0, y), ∂yF∞(0, y)) is also a Gram matrix whose determinant only
vanishes at the origin, and hence is uniformly bounded from below on any compact
set of {x=0, y �=0}. Naturally the same reasoning holds on the set {y=0, x �=0}. �
Remark 3. Note that the above arguments also actually ensure the nondegeneracy
of the stationary limit field G∞ appearing in Propositions 2 and 3.

2.2. Continuity of the nodal length. In this section, we establish that the
functional that associates to a function f : R2 → R the length of its nodal set,
or more generally its d − 1-dimensional volume if f : Rd → R, is continuous with
respect to the C1 topology on compact sets. Let us be more precise and consider
the space E := C1(Rd,R) endowed with the C1 topology associated to the family
of seminorms || · ||K :

||f ||K := sup
K

(
|f |+

d∑
i=1

|∂if |
)
, K a compact subset of Rd.

Given such a compact K ⊂ Rd, we will say that f ∈ E is nondegenerate on K if

∇xf �= 0 whenever x ∈ ZK(f).
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If A ⊂ Rd is a measurable set, we will denote by Hd−1(A) with values in [0,+∞]
its (d− 1)-dimensional Hausdorff measure so that the object of interest here is the
continuity in f of the nodal volume vK(f) := Hd−1(ZK(f)).

Theorem 3. Let K ⊂ Rd be a compact set and let (fn)n≥1 be a sequence of
functions in E which converges to a function f ∈ E in the C1 topology on K. If
f is nondegenerate on K, then the volumes vK(f) and vK(fn), n sufficiently large,
are finite and we have

lim
n→+∞

vK(fn) = vK(f).

Proof of Theorem 3. We first need to introduce some notation. For a nondegen-
erate function f , we denote by σ(x) = σf (x) the index of the first nonvanishing
component of the gradient at x, namely,

σ(x) = σf (x) := inf{1 ≤ i ≤ d, ∂if(x) �= 0}.
If x = (x1, . . . , xd) and 1 ≤ i ≤ d, we will write

πi(x) = x̌i := (x1, . . . , xi−1, xi+1, . . . , xd).

Finally, if y ∈ Rd and δ, ε > 0, Ri(y, δ, ε) will denote the following open rectangle:

Ri(y, δ, ε) := {x ∈ R
d, |xi − yi| < δ, |x� − y�| < ε, 1 ≤ � ≤ d, � �= i}.

Let us first prove the following lemma, which ensures that under the hypotheses of
Theorem 3 and for n sufficiently large, the zeros of fn are located in a neighborhood
of the zeros of f . Here and below, d(x, Z) denotes the Euclidean distance between
a point x ∈ Rd and a set Z ⊂ Rd.

Lemma 2. Let (fn)n≥1 be a sequence of functions in E which converges to a
function f ∈ E with respect to the C1 topology on the compact K. For all ε > 0
and for n sufficiently large, we have

ZK(fn) ⊂ ZK(f, ε) := {x ∈ R
d, d(x, ZK(f)) ≤ ε}.

Proof of Lemma 2. By contradiction, let us suppose that there exists ε > 0 such
that for all N ≥ 1, there exists n ≥ N and xn ∈ ZK(fn) such that d(xn, ZK(f)) > ε.
Since the sequence (xn)n≥1 takes values in the compact set K, one could then
extract a converging subsequence (xnk

)k≥1, converging to some x∞ ∈ K with
d(x∞, ZK(f)) ≥ ε. But

|f(x∞)| = |f(x∞)− fnk
(xnk

)| = |f(x∞)− fnk
(x∞) + fnk

(x∞)− fnk
(xnk

)|

≤ sup
x∈K

|f(x)− fnk
(x)|+ sup

x∈K
|f ′

nk
(x)| × |x∞ − xnk

|,

which would go to zero as k goes to infinity because fn converges to f in the C1

topology on K, and hence the contradiction between the two assertions f(x∞) = 0
and d(x∞, ZK(f)) ≥ ε. �

Let us go back to the proof of Theorem 3 and consider the evaluation mapping
from E × R

d to R defined by

F (h, x) := h(x).

Being linear in h, the function F is naturally continuously Fréchet differentiable
in h, and since the space E is composed of C1 functions, F is also continuously
Fréchet differentiable in the variable x. The partial derivatives in both h and x being
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continuous, the function F is then actually continuously Fréchet differentiable in
(h, x); see, e.g., Theorem 10, p. 144 of [Che01]. By hypothesis, since the function
f is nondegenerate on K, if x0 = (x1

0, . . . , x
d
0) ∈ ZK(f), we have F (f, x0) = 0 and

there exists an index 1 ≤ i = σf (x0) ≤ d such that ∂xif(x0) �= 0. In other words,
since ∂xiF (f, x0) = ∂xif(x0), the inverse (∂xiF (f, x0))

−1 is well defined. By the
C1 version of the implicit function theorem in Banach spaces (see, e.g., Theorems 1
and 2, pp. 315 and 317 of [LS71] or Theorems 3 and 4, pp. 138 and 139 of [Che01]),
there exists ε0 > 0, δ0 > 0, and a function X0 : E × Rd−1 → R of class C1 such
that

(2.1) h(x) = 0 ⇐⇒ xi = X0(h, x̌
i) for all

{
x ∈ Ri(x0, 2δ0, 2ε0),
||h− f || < 2ε0.

From the covering of the compact nodal set ZK(f) by the union of open sets of the
type Ri(x0, δ0, ε0), one can extract a finite covering. Namely, there exists a positive
integer m, and for all 1 ≤ j ≤ m, there exists xj ∈ ZK(f) as well as εj > 0 and
δj > 0 such that

(2.2) ZK(f) ⊂
m⋃
j=1

Vj , where Vj := Rσ(xj)(xj , δj , εj).

For all 1 ≤ j ≤ m, if k = σf (xj), we have a similar identification to the one given
by equation (2.1), namely in a neighborhood of (f, xj),

(2.3) h(x) = 0 ⇐⇒ xk = Xj(h, x̌
k), for all

{
x ∈ Bk(xj , 2δj , 2εj),
||h− f || < 2εj ,

where the applicationXj : E×Rd−1 → R is of class C1. In particular, setting h = f ,
we get that if J = {j1, . . . , jr} ⊂ {1, . . . ,m} and

⋂
j∈J Vj �= ∅, the intersection

ΓJ = ZK(f) ∩

⎛
⎝⋂

j∈J

V j

⎞
⎠

identifies with a parametrized hypersurface whose finite volume is given by the
classical formula

(2.4) Hd−1(ΓJ) =

∫
EJ

√
1 + |∇Xj1(f, y)|2dy,

where the integration is performed on the compact rectangle

EJ := πj1

⎛
⎝⋂

j∈J

V j

⎞
⎠ .

Taking care of the overlapping, the finite total volume of the nodal set is then given
by the celebrated Poincaré formula

(2.5) vK(f) =
∑

∅
=J⊂{1,...,m}
(−1)|J|Hd−1(ΓJ ).

Let us now emphasize the fact that in equation (2.2), the union not only contains
the nodal set ZK(f), but there exists ε > 0 small enough such that this union
contains a ε-neighborhood of the latter:

ZK(f, ε) ⊂
m⋃
j=1

Vj .
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Figure 4. Finite covering of the compact nodal set

By Lemma 2, we get that for n large enough ZK(fn) ⊂ ZK(f, ε) ⊂
⋃m

i=j Vj , and
thus

ZK(fn) =

m⋃
j=1

[
ZK(fn) ∩ V j

]
.

From the equivalence (2.3) given by the implicit function theorem, as above, we get
that if J = {j1, . . . , jr} ⊂ {1, . . . ,m} and

⋂
j∈J Vj �= ∅, the intersection

Γn
J = ZK(fn) ∩

⎛
⎝⋂

j∈J

V j

⎞
⎠

also identifies with a parametrized hypersurface whose volume is given by

(2.6) Hd−1(Γ
n
J) =

∫
EJ

√
1 + |∇Xj1(fn, y)|2dy.

By the Poincaré formula, we similarly have

(2.7) vK(fn) =
∑

∅
=J⊂{1,...,m}
(−1)|J|Hd−1(Γ

n
J)

so that, comparing it to equation (2.5), we get

|vK(f)− vK(fn)| ≤
∑

∅
=J⊂{1,...,m}
|Hd−1(ΓJ)−Hd−1(Γ

n
J)|.

The right-hand side of the last equation goes to zero as n goes to infinity be-
cause, from equations (2.4) and (2.6), for any nonempty subset J = (j1, . . . , jr) of
{1, . . . ,m}, we have

|Hd−1(ΓJ)−Hd−1(Γ
n
J)| ≤

∫
EJ

∣∣∣∣
√
1 + |∇Xj1(f, y)|2 −

√
1 + |∇Xj1(fn, y)|2

∣∣∣∣ dy,
and the difference ∇Xj1(f, y) − ∇Xj1(fn, y) goes to zero uniformly on EJ , since
the function Xj1 is C1 and since the sequence fn converges to f in the C1 topology
on K.

�
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2.3. Local universality. Let K ⊂ R2 be a compact set. Combining Proposi-
tion 1 and Lemma 1, we get that as n goes to infinity, the field (Fn(x, y))x∈K

converges with respect to the C1 topology on K to the nondegenerate limit field
(F∞(x, y))x∈K . The announced local universality result is then a direct consequence
of the continuous mapping theorem together with the continuity of the nodal length
established in Theorem 3.

Theorem 4. Let K ⊂ R2 be a compact set. Then as n goes to infinity, the length
�K(Fn) of the nodal set converges in distribution to �K(F∞).

3. Global universality

We now turn to the proof of Theorem 2 on the universality of the mean nodal
length at the macroscopic level.

3.1. The Gaussian case. In this section, we consider the Gaussian case, namely
we assume that all the entries ak,l are independent standard Gaussian variables.
In this situation, the expectation of the nodal length �K(fn) can be explicitly
computed thanks to celebrated Kac–Rice formula, since both fn and its derivative
have explicit densities.

Lemma 3. For (x, y) ∈ R
2, the Gaussian vector

(
fn(x, y),

∂fn
∂x (x, y), ∂fn∂y (x, y)

)
is

centered with explicit covariance Σ = (Σij)1≤i,j≤3 given by

Σ11 = An(x)An(y), Σ22 = Cn(x)An(y), Σ33 = An(x)Cn(y),
Σ12 = −Bn(x)An(y), Σ13 = −An(x)Bn(y), Σ23 = Bn(x)Bn(y),

where

An(·) :=
∑

1≤k≤n

cos2(k·), Bn(·) :=
∑

1≤k≤n

k sin(k·) cos(k·), Cn(·) :=
∑

1≤k≤n

k2 sin2(k·).

Note that the sums An, Bn, and Cn appearing in Lemma 3 can actually be
written as simple combinations of trigonometric functions. For example, the next
lemma can be found in [Wil91].

Lemma 4. We have

4An(x) = (2n+ 1)g0 + g1,
8Bn(x) = (2n+ 1)2h0 + (2n+ 1)h1 + h2,
48Cn(x) = (2n+ 1)3k0 + (2n+ 1)2k1 + (2n+ 1)k2 + k3,

where, setting z := (2n+ 1)x, and f(x) := csc(x)− x−1, the functions gi, hi, and
ki are defined as

g0(x) :=1 + z−1 sin z, g1(x) = −2 + f(x) sin z,

h0(x) :=− z−1 cos z + z−2 sin z, h1(x) = −f(x) cos z, h2(x) = −f ′(x) sin z,

k0(x) :=1− 3z−1 sin z − 6z−2 cos z + 6z−3 sin z,

k1(x) :=− 3f(x) sin z, k2(x) = 6f ′(x) cos z − 1, k3(x) = 3f ′′(x) sin z.

It is remarkable that, conditional to the event fn = 0, the partial derivatives of
fn are independent Gaussian random variables.
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Lemma 5. Given fn = 0, the conditional distribution of
(

∂fn
∂x , ∂fn

∂y

)
is centered

normal with covariance matrix

Σ11

(
σ2
n(x) 0
0 σ2

n(y)

)
,

where we have set, for all t ∈ R,

σ2
n(t) :=

Cn(t)

An(t)
−
(
Bn(t)

An(t)

)2

.

Proof. Conditional to the event fn = 0, the conditional covariance matrix Σfn=0

of the gradient vector ∇fn =
(

∂fn
∂x , ∂fn∂y

)
is given by

Σfn=0 = Var(∇fn)− Cov(∇fn, fn)[Var(∇fn)]
−1[Cov(∇fn, fn)]

T

=
1

Σ11

(
Σ11Σ22 − Σ2

12 Σ11Σ23 − Σ12Σ13

Σ11Σ23 − Σ12Σ13 Σ11Σ33 − Σ2
13

)
.

The result thus follows from Lemma 3; in particular, the independence of the
marginals follows from the relation Σ11Σ23 − Σ12Σ13 = 0. �

Let us now describe the asymptotic behavior, as n goes to infinity, of the function
σ2
n(t) appearing in the covariance matrix of Lemma 5.

Lemma 6. For n ≥ 3, uniformly in t ∈ R, we have

0 ≤ σ2
n(t)

n2
≤ 48,

and for all t �= 0 mod π, we have

lim
n→+∞

σ2
n(t)

n2
=

1

3
.

Proof. From Lemma 3, we have

σ2
n(t)

n2
=

1
n

∑n
k=1

k2

n2 sin
2(kt)

1
n

∑n
k=1 cos

2(kt)
−
(

1
n

∑n
k=1

k
n sin(kt) cos(kt)

1
n

∑n
k=1 cos

2(kt)

)2

.

Thus we have, for all t ∈ R,

0 ≤ σ2
n(t)

n2
≤
(
1

n

n∑
k=1

cos2(kt)

)−1

.

Now, using the relation cos(2a) = 2 cos2(a)−1, one easily gets that if cos(kt)2 ≤ 1/8,
then necessarily cos2(2kt) ≥ 1/2 ≥ 1/8 so that for n ≥ 3 and for all t ∈ R we have

1

n

n∑
k=1

cos2(kt) ≥ 1

n

�n/2
∑
k=1

[
cos2(kt) + cos2(2kt)

]
≥ 1

8n
�n/2� ≥ 1

48
.

Now, using the explicit forms of An, Bn, and Cn given by Lemma 4, one deduces
that for all t �= 0 mod π, we have

lim
n→+∞

An(t)

n
=

1

2
, lim

n→+∞

Bn(t)

n2
= 0, lim

n→+∞

Cn(t)

n3
=

1

6
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so that

lim
n→+∞

σ2
n(t)

n2
= lim

n→+∞

(
Cn(t)

n3
× n

An(t)
−
(
Bn(t)

n2

n

An(t)

)2
)

=
1

3
.

�

We are now in a position to explicitly compute the expectation of the length of
a nodal curve associated to the random trigonometric polynomial fn(x, y).

Theorem 5. Let (ak,l)k,l≥1 be a sequence of independent standard, centered, Gauss-
ian variables and consider the associated random trigonometric polynomial fn(x, y)
defined by equation (1.1). Then, as n tends to infinity, we have

lim
n→∞

E[�[0,π]2(fn)]

n
=

π2

2
√
3
.

Proof. By the Kac–Rice formula, if pfn(x,y) denotes the density function of fn(x, y),
the rescaled expectation of the nodal length is equal to

E[�[0,π]2(fn)]

n
=

1

n

∫∫
[0,π]2

E

⎛
⎝
√(

∂fn
∂x

)2

+

(
∂fn
∂y

)2∣∣fn(x, y) = 0

⎞
⎠ pfn(x,y)(0)dxdy

=
1√
2π

∫∫
[0,π]2

1

nΣ
1/2
11

E

⎛
⎝
√(

∂fn
∂x

)2

+

(
∂fn
∂y

)2∣∣fn(x, y) = 0

⎞
⎠ dxdy.

In other words, by Lemma 5, we have the representation

(3.1)
E[�[0,π]2(fn)]

n
=

1√
2π

∫∫
[0,π]2

E

[√
X2

n(x) + Y 2
n (y)

]
dxdy,

where Xn(x) and Yn(y) are independent centered Gaussian variables with variance
σ2
n(x)/n

2 and σ2
n(y)/n

2, respectively. By the Cauchy–Schwarz inequality, using the
upper bound of Lemma 6, we have uniformly in (x, y) ∈ [0, π]2 that

(3.2) E

[√
X2

n(x) + Y 2
n (y)

]
≤
√
E [X2

n(x) + Y 2
n (y)] ≤

√
σ2
n(x) + σ2

n(y)

n2
≤

√
96.

From Lemma 6 again, as n goes to infinity, for all x �= 0 mod π and y �= 0 mod π,
the Gaussian vector (Xn(x), Yn(y)) converges in distribution to (X∞, Y∞), where
(X∞, Y∞) is a two-dimensional centered Gaussian vector with covariance matrix
1/3 × Id. Since the variables are Gaussian, we have a uniform control on their
moments so that for all x �= 0 mod π and y �= 0 mod π,

(3.3) lim
n→+∞

E

[√
X2

n(x) + Y 2
n (y)

]
= E

[√
X2

∞ + Y 2
∞

]
=

1√
3

√
π

2
.

Indeed, if (X,Y ) ∼ N (0, Id), then
√
X2 + Y 2 has the standard Rayleigh distri-

bution with expectation
√
π/2. From equations (3.1), (3.2), and (3.3), by the

dominated convergence theorem, one then concludes that

lim
n→∞

E[�[0,π]2(fn)]

n
=

1√
2π

∫∫
[0,π]2

E

[√
X2

∞ + Y 2
∞

]
dxdy =

π2

2
√
3
.

�
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3.2. Moment control. In the above Theorem 4, we proved that given a compact
set K ⊂ R2 and as n goes to infinity, the microscopic length �K(Fn) of the nodal set
of the normalized trigonometric polynomial converges in distribution to �K(F∞).
The object of this subsection is to establish a uniform upper bound for the expec-
tation of this microscopic length, uniform in both the degree n and in the compact
K. More precisely, taking care of the change of scale on the length of the nodal
set, the mean macroscopic nodal length can be written as the sum

(3.4)
E[�[0,π]2(fn)]

n
=

E[�[0,nπ]2(Fn)]

n2
=

1

n2

∑
0≤k,l≤n−1

E [Ln,k,l] ,

where Ln,k,l denotes the length of the nodal set associated to Fn(x, y) inside the
square [kπ, (k + 1)π] × [lπ, (l + 1)π]. We shall prove the following uniform upper
bound.

Proposition 4. There exists α > 0 and C > 0 such that

(3.5) sup
n≥1

sup
0≤k,l≤n−1

E
[
Ln,k,l

1+α
]
≤ C.

3.2.1. Geometric considerations. In this first subsection, we prove two elementary
and purely geometric results. Both results relate the length of a smooth curve
drawn in a unit square to the number of its intersections with some prescribed
lines. As a corollary, we derive an a priori estimate for the microscopic length
of a trigonometric polynomial in a unit square. Both proofs use the so-called
probabilistic method saying that a random variable X such that E(X) ≥ c admits
at least one realization ω such that X(ω) ≥ c.

Remark 4. At first glance, one might be tempted to use the Crofton formula in
order to relate the length of the nodal domain of a trigonometric polynomial to the
number of its intersections with some random lines. Nevertheless, such an approach
faces two major obstructions. On the one hand, when the slope of such a line is
irrational, then when restricting the bivariate trigonometric polynomial to it, the
resulting random function is no longer polynomial. For this reason, in Theorem 7
we relate the length of the nodal set to its number of intersections with vertical
or horizontal lines, which then allow us to derive a deterministic upper bound on
the nodal length. On the other hand, since the nodal set is random, the lines
intersecting it are also generically random. This randomness dependence is hard to
manage when performing characteristic functions computations since we lose the
structure of independent summands. This is why we prove Theorem 6 in order to
“force” the lines to go through deterministic points on which the independance of
summands is preserved and the characteristic functions method applicable.

Theorem 6. There exists an absolute constant c > 0 such that for any unit square
S with corners A, B, C, and D and any C1 curve C inside S with length l, one
may find a straight line L such that:

(i) {A,B,C,D} ∩ L �= ∅,
(ii) #{L ∩ C} ≥ cl.

Proof. Using the probabilistic method, we will actually establish the above result
with c = 1/8. On a given probability space (Ω,F ,P), we denote by P a random
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point inside the square with uniform distribution. Set

XC := # {C ∩ ((AP ) ∪ (BP ) ∪ (CP ) ∪ (DP ))} .

Then the result follows if one can show that E(XC) ≥ 4cl. Indeed, in this case,
there exists one realization of the random variable such that XC(ω) ≥ 4cl, i.e., the
number of intersections of one of the four lines with C is at least cl. Notice that,
since C is assumed to be C1, it is rectifiable. Hence, one might try to seek for
(Cp)p≥1 a sequence of polygonal lines Cp such that:

(i) ∀p ≥ 1, E[XC] ≥ E[XCp
],

(ii) �(Cp) → �(C),
(iii) E[XCp

] ≥ 1
2�(Cp).

Assume that the curve C is parametrized by two functions of class C1, that is to say,
the curve is represented as C = {(x(t), y(t)) | t ∈ [0, 1]}, and consider the polygonal
line Cp interpolating between the points (x(kp ), y(

k
p )), for 0 ≤ k ≤ p. At this stage,

we notice that (i) is a consequence of connexity and (ii) proceeds from the fact
that C is rectifiable. Thus, one is only left to establish (iii). By the linearity of
the expectation, without loss of generality, we may just consider the case when C
is the segment IJ contained in the domain OCD; see Figure 5 below. If it is not
the case, then we can always split it into two segments, respectively, contained in
the domains OCD and ABC, respectively. Note that the point I is on the left of
J . Assume that J is higher than I. Since for each line (AP ) (or (BP ), (CP ), or
(DP )) there is at most one intersection point with C,

E[XC] = P{(AP ) ∩ C �= ∅}+ P{(BP ) ∩ C �= ∅}
+ P{(CP ) ∩ C �= ∅}+ P{(DP ) ∩ C �= ∅}

=
λ2(AA1A2) + λ2(BB1B2) + λ2(CC1C2) + λ2(DD1D2)

λ2(ABCD)

=
1

2
(A1A2 +B1B2 + C1C2 +D1D2),

where λ2 stands for the area or two-dimensional Lebesgue measure and A1 and A2

are the intersections between AI,AJ , and CD.
From I, draw a line parallel to CD which intersects AA2 at I1; similarly, draw a

line parallel to (AD) which intersects CC2 at I2. Now, draw the rectangle II2I3I1.
It is easy to check that the point J must lie inside this rectangle. Therefore,

A1A2 + C1C2 ≥ II1 + II2 ≥ II3 ≥ IJ.

In the last inequality, we used the simple observation that the largest distance
between two points in a rectangle is the length of the diagonal. We thus have

E[XC ] ≥ IJ/2 = length(C)/2.

Otherwise, if I is higher than J , we make an analoguous reasoning by simply
considering the two triangles BB1B2 and DD1D2. �

Theorem 7. There exists an absolute constant c > 0 such that for any unit square
S with corners A,B,C, and D and any C1 curve C inside S with length l, one may
find a horizontal or vertical straight line L such that #{L ∩ C} ≥ cl.
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I
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A1 A2

O

I1

I2 I3

Figure 5. A segment case

Proof. Here, we again use the probabilistic method and the piecewise linear ap-
proximation to prove the claimed result for c = 1/2. Let us just consider the curve
C as a segment IJ . Uniformly choose a horizontal line inside the square (i.e., choose
uniformly a point on AD and draw a horizontal line from this point) and define X1

as the number of intersection points between this line and IJ . Similarly, choose
uniformly a vertical line inside the square and define X2. Then clearly,

EX1 + EX2 = I1J1 + I2J2 ≥ IJ,

where I1J1 and I2J2 are the projections of IJ on AD and CD. Therefore, there exist
a horizontal line or a vertical one such that the total number of intersection points
with the nodal curve is at least l. This yields the statement of the theorem. �

We can now derive the announced a priori estimate on the microscopic nodal
length.

Corollary 1. Suppose that Q(x, y) is any trigonometric polynomial of degree n
and denote by Ln,k,l the length of the nodal line of n−1Q( xn ,

y
n ) in [kπ, (k + 1)π]×

[lπ, (l+ 1)π]. Then we have

(3.6) Ln,k,l ≤
2n

c
.

Proof. Thanks to Theorem 7, there exists a vertical or horizontal line having at
least Ln,k,l/2 intersection points with the nodal curve. Otherwise, restricted on
this line, Q(x, y) becomes a trigonometric polynomial with only one variable; so it
has at most n roots over any interval length π. Then the result follows. �

3.2.2. Small ball estimate. In this section, we show that the uniform upper bound
stated in Proposition 4 actually reduces to a small ball estimate for the rescaled
polynomial Fn at well-chosen lattice points. To do so, let us first recall some
standard number theory considerations which will be used throughout the sequel.
Let n be any positive integer, and let p ∈ N. We shall denote by ord(p) the order
of p in the group (Z/nZ,+), that is to say, ord(p) = n

gcd(p,n) . Then we have the

next two lemmas.



8348 JÜRGEN ANGST, VIET-HUNG PHAM, AND GUILLAUME POLY

Lemma 7. max(ord(p), ord(p+ 1)) ≥ √
n.

Proof. Arguing by contradiction, let us assume that we have both ord(p) <
√
n and

ord(p+ 1) <
√
n. We then have gcd(p, n) >

√
n and gcd(p+ 1, n) >

√
n. However,

since gcd(p, p + 1) = 1, it holds that gcd (gcd(p, n), gcd(p+ 1, n)) = 1, and thus
gcd(p, n) gcd(p + 1, n) divides n. This implies n < gcd(p, n) gcd(p + 1, n) ≤ n,
which is a contradiction. �

Lemma 8. For any 1-periodic function f and any integer p ≥ 1,

(3.7)
1

n

n∑
k=1

f

(
kp

n

)
=

1

ord(p)

ord(p)∑
k=1

f

(
k

ord(p)

)
.

Proof. It is clear that p/n = q/ord(p), where gcd(q, ord(p)) = 1. Since the set
q × {1, 2, . . . , ord(p)} is a complete residue system of modulo ord(p) and since the
function f is 1-periodic,

ord(p)∑
k=1

f

(
kp

n

)
=

ord(p)∑
k=1

f

(
kq

ord(p)

)
=

ord(p)∑
k=1

f

(
k

ord(p)

)
.

The result follows from the fact that one can divide the set {1, 2, . . . , n} into
n/ord(p) complete residue systems. �

Towards a small ball problem. Let us recall that Ln,k,l denotes the length of
the nodal line of Fn in the square [kπ, (k + 1)π]× [lπ, (l + 1)π]. Let us give α > 0
to be chosen later. In virtue of Corollary 1, we have

E(Ln,k,l
1+α) = (1 + α)

∫ ∞

0

tαP (Ln,k,l > t) dt

= (1 + α)

∫ 2n
c

0

tαP (Ln,k,l > t) dt.

Thus, one is left to estimate the term P (Ln,k,l > t). To do so, we shall use the
content of Theorem 6. We place ourselves on the square [kπ, (k+1)π]× [lπ, (l+1)π]
and we know that there exists a straight line, say L, such that:

(i) (kπ, lπ) or ((k + 1)π, lπ) or (kπ, (l + 1)π) or ((k + 1)π, (l+ 1)π) is on L,
(ii) the number of roots of Fn restricted to L ∩ [kπ, (k + 1)π]× [lπ, (l+ 1)π] is

greater than ct.

Now, in order to fix the ideas, assume that (kπ, lπ) ∈ L and denote by (u, v) the
unit direction vector of the straight line L. We set φn(s) = Fn(kπ + su, lπ + sv)
for s ∈ [0, T ], where T is the largest positive number such that (kπ, lπ) + s(u, v)
is inside the square. In particular, a simple application of Pythagoras’ Theorem
entails that T ≤ π

√
2. As a result, we know that φn vanishes at least r = �ct�

times in the interval [0, π
√
2]. Let us introduce a1 a root of φ′, a2 a root of φ′′, a3

a root of φ′′′, . . . , and ar−1 a root of φ(r−1) (which exist by a repeated application
of Rolle’s Theorem). We may write

φn(x1) =

∫ x1

a1

∫ x2

a2

· · ·
∫ xr−1

ar−1

φ(r−1)(xr)dxrdxr−1 · · · dx2.
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Taking x1 = 0 and using the triangle inequality, one may deduce the following
inequality:

(3.8) |φn(0)| = |Fn(kπ, lπ)| ≤
(π
√
2)r−1

(r − 1)!
‖φ(r−1)‖∞.

As a result, for any M > 0, we get

P (Ln,k,l > t) ≤ P

(
|Fn(kπ, lπ)| ≤

(π
√
2)r−1

(r − 1)!
‖φ(r−1)‖∞

)

≤ P

(
|Fn(kπ, lπ)| ≤ M

(π
√
2)r−1

(r − 1)!

)
+ P

(
‖φ(r−1)‖∞ > M

)
.(3.9)

Recall that we have assumed that (kπ, lπ) belongs to L. In the general case, we
rather have

P (Ln,k,l > t) ≤ P

(
|Fn(kπ, lπ)| ≤

(π
√
2)r−1

(r − 1)!
‖φ(r−1)‖∞

)

+ P

(
|Fn((k + 1)π, lπ)| ≤ (π

√
2)r−1

(r − 1)!
‖φ(r−1)‖∞

)

+ P

(
|Fn(kπ, (l + 1)π)| ≤ (π

√
2)r−1

(r − 1)!
‖φ(r−1)‖∞

)

+ P

(
|Fn((k + 1)π, (l+ 1)π)| ≤ (π

√
2)r−1

(r − 1)!
‖φ(r−1)‖∞

)
,

which yields

P (Ln,k,l > t) ≤ P

(
|Fn(kπ, lπ)| ≤ M

(π
√
2)r−1

(r − 1)!

)

+ P

(
|Fn((k + 1)π, lπ)| ≤ M

(π
√
2)r−1

(r − 1)!

)

+ P

(
|Fn(kπ, (l + 1)π)| ≤ M

(π
√
2)r−1

(r − 1)!

)

+ P

(
|Fn((k + 1)π, (l+ 1)π)| ≤ M

(π
√
2)r−1

(r − 1)!

)

+ 4P
(
‖φ(r−1)‖∞ > M

)
.

The last estimate requires the following bound.

Lemma 9.

P

(
‖φ(r−1)‖∞ > M

)
≤ C

M
.

Proof. Set K = [kπ, (k + 1)π]× [lπ, (l+ 1)π]. Relying on [Ada75, pp. 107, Lemma
5.15, inequality (25)] , there exists a positive constant C (not depending on k, l)
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such that for any mapping f in C2(K), one gets the inequality

(3.10) sup
x∈K

|f(x)| ≤ C

(∫
K

(
f2(x) + ‖∇f(x)‖2 + ‖∇2f(x)‖2

)
dx

) 1
2

.

The fact that the above constant C does not depend on k, l can be simply obtained
by a mere change of variables. Recalling that (u, v) is a unit vector, we first notice
that

|φ(r−1)(t)| =

∣∣∣∣∣∣
∑

i+j=r−1

∂i
1∂

j
2Fn(kπ + tu, lπ + tv)uivj

∣∣∣∣∣∣

≤
∑

i+j=r−1

sup
x∈K

∣∣∣∣∣∣
∑

i+j=r−1

∂i
1∂

j
2Fn(x)

∣∣∣∣∣∣.

Thus, one is left to bound from above each partial derivative ∂i
1∂

j
2Fn on the compact

set K. Here, we apply the inequality (3.10) and we get

sup
x∈K

∣∣∣∂i
1∂

j
2F

∣∣∣ ≤ CK

∣∣∣∣∣∣
∫
K

⎛
⎝ ∑

0≤q1+q2≤2

∣∣∣∂i+q1
1 ∂j+q2

2 Fn(x)
∣∣∣2
⎞
⎠ dx

∣∣∣∣∣∣
1
2

.

However, for any couple of indexes (i, j), setting

E(i,j)(x, y) :=
∑

r,s≤n−1

( r

n

)i ( s

n

)j

ar,s cos
(i)
(rx
n

)
cos(j)

(ry
n

)

we have by Fubini and orthogonality of the random variables {ar,s} that

E

(∫
K

(
∂i
1∂

j
2Fn(x)

)2

dx

)

=
1

n2
E

[∫ (k+1)π

kπ

∫ (l+1)π

lπ

∣∣E(i,j)(x, y)
∣∣2 dxdy

]

=
1

n2

∫ (k+1)π

kπ

∫ (l+1)π

lπ

E

[∣∣E(i,j)(x, y)
∣∣2] dxdy

≤ 1

n2

∑
r,s≤n−1

( r

n

)2i ( s

n

)2j

≤ 1.
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One is then left to employ the Markov inequality in order to conclude the following
proof:

P

(
‖φ(r−1)‖∞ ≥ M

)

≤ P

⎛
⎝ ∑

i+j=r−1

sup
x∈K

∣∣∣∂i
1∂

j
2Fn

∣∣∣ ≥ M

⎞
⎠

≤ 1

M

∑
i+j=r−1

E

[
sup
x∈K

∣∣∣∂i
1∂

j
2Fn

∣∣∣]

≤ C

M

∑
i+j=r−1

E

⎡
⎢⎣
√√√√√∫

K

⎛
⎝ ∑

0≤q1+q2≤2

∣∣∣∂i+q1
1 ∂j+q2

2 Fn(x)
∣∣∣2
⎞
⎠ dx

⎤
⎥⎦

≤ C

M

∑
i+j=r−1

√√√√√E

⎡
⎣∫

K

⎛
⎝ ∑

0≤q1+q2≤2

∣∣∣∂i+q1
1 ∂j+q2

2 Fn(x)
∣∣∣2
⎞
⎠ dx

⎤
⎦

≤ rC
√
6

M
.

�

Estimation of the small ball. From equation (3.9), upper bounding the prob-
ability P(Ln,k,l > t) thus reduces to establish a small ball estimate for Fn(kπ, lπ).
In this paragraph, we shall indeed establish such a small ball estimate, for any
1 < θ < 3

2 :

(3.11) P (|Fn(kπ, lπ)| ≤ ε) ≤ C

(
ε+

1

nθ

)
,

provided that ord(k) ≥
√
n and ord(l) ≥

√
n. To proceed, we use the method of

characteristic functions. First of all (see, e.g., [FGG16]) we infer that for some
absolute constant C > 0, we have

P (|Fn(kπ, lπ)| ≤ ε) ≤ Cε

∫
R

ΦFn(kπ,lπ)(ξ)e
− ε2ξ2

2 dξ,(3.12)

where ΦFn(kπ,lπ)(·) is the characteristic function of Fn(kπ, lπ). Note that if X is

a random variable X such that E(X) = 0, E(X2) = 1, then we have |E(eiξX)| ≤
exp(−ξ2/4) on an interval [−α, α] for α > 0 small enough. As a result we may first
write∫

|ξ|≤αn

ΦFn(kπ,lπ)(ξ)e
− ε2ξ2

2 dξ ≤
∫
|ξ|≤αn

ΦFn(kπ,lπ)(ξ)dξ

≤
∫
|ξ|≤αn

∏
1≤i,j≤n

e−
ξ2

4n2 cos2(i kπ
n ) cos2(j lπ

n )dξ.

However, based on the following doubling formula cos(2x) = 2 cos(x)2 − 1, we have
the following dichotomy: either | cos(x)| ≥ 1

2 or | cos(2x)| ≥ 1
2 . We may then restrict

our attention to the set of indexes (i, j) such that | cos(ikπn )| ≥ 1
2 and | cos(j lπ

n )| ≥ 1
2
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whose cardinality is hence necessarily larger than n2

4 . This entails that

(3.13)
∏

1≤i,j≤n

e−
ξ2

4n2 cos2(i kπ
n ) cos2(j lπ

n ) ≤
(
e−

ξ2

64n2

)n2

4

= e−
ξ2

256 .

However, since ξ �→ e−
ξ2

256 ∈ L1(R), the bound (3.13) implies the existence of an
absolute constant C > 0 such that

(3.14) sup
n≥1,ε>0

∫
|ξ|≤αn

ΦFn(kπ,lπ)(ξ)e
− ε2ξ2

2 dξ ≤ C.

As a result, bounding the right-hand side of (3.12) requires the control of the integral

(3.15) I2 := ε

∫
|ξ|≥αn

ΦFn(kπ,lπ)(ξ)e
− ε2ξ2

2 dξ.

Now, relying on Lemma 8, we get

ΦFn(kπ,lπ)(ξ) =
∏

1≤i≤ord(k)
1≤j≤ord(l)

Φa

(
ξ

n
cos

(
iπ

ord(k)

)
cos

(
lπ

ord(l)

)) n2

ord(k)ord(l)

,

where Φa naturally stands for the characteristic function of the common law of the
coefficients. By writing u = ξ

n , the integral (3.15) becomes

(3.16)

I2 := nε

∫
|u|>α

∏
1≤i≤ord(k)
1≤j≤ord(l)

Φa

(
u cos

(
iπ

ord(k)

)
cos

(
lπ

ord(l)

)) n2

ord(k)ord(l)

e−
u2ε2n2

2 du.

Now, for fixed A < B < 1 and u ∈ R/{0}, we denote by φ = φA,B,u : [−1, 1] →
[0, 1] the Lipschitz function such that φ(x) = 1 when |Φa(ux)| ≤ A, φ(x) = 0 when
|Φa(ux)| ≥ B, and φ is linear on |Φa(ux)| ∈ [A,B]. Note that, for any (x, y) ∈ R

2,
if φ(x) = 1 and φ(y) = 0, then necessarily (since Φa is 1-Lipschitz)

|ux− uy| ≥ |Φa(ux)− Φa(uy)| ≥ B −A.

Besides, if |Φa(uz)| ∈]A,B[ one may always find an interval (x, y) containing z
such that (i) |Φa(ux)| = A and |Φa(uy)| = B, (ii) for all w ∈ (x, y) it holds that
|Φa(uw)| ∈ [A,B]. Since by definition φ is linear on (x, y), we may deduce that

(3.17) |φ′(z)| =
∣∣∣∣φ(x)− φ(y)

x− y

∣∣∣∣ ≤ |u|
B −A

.

As a result, setting Ψ(x, y) := φ(cos(πx) cos(πy)), recognizing a two-dimensional
Riemann sum, we get∣∣∣∣∣∣

1

ord(k)ord(l)

ord(k)∑
i=1

ord(l)∑
j=1

Ψ

(
i

ord(k)
,

j

ord(l)

)
−
∫
[0,1]2

Ψ(x, y)dxdy

∣∣∣∣∣∣
≤ ‖∇Ψ‖∞

min(ord(k), ord(l))
≤ CA,B

|u|√
n
.(3.18)

Note that, by construction, φ implicitly depends on u,A, and B. For the sake of
clarity, we will not carry this dependency in our notation. Now denote by ρ the
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density of the image measure of Lebesgue on [0, 1]2 by the functional (x, y) �→
cos(πx) cos(πy) so that we have

∫
[0,1]2

Ψ(x, y)dxdy =
∫
R
φ(t)ρ(t)dt. Since ρ ∈

L1(R), it is a well-known fact that

lim
δ→0

sup
λ(A)≤δ

∫
A

ρ(t)dt = 0.

Let us fix δ0 > 0 such that supλ(A)≤δ0

∫
A
ρ(t)dt < 1

2 . Nevertheless, one may fix

A,B > 0 (eventually close to 1) such that sup|u|>α λ ({φ �= 1}) < δ0. Let us detail
this assertion a bit. First of all, we notice that

λ ({φ �= 1}) =
1

u

∫ u

0

1{|Φa(t)|>A}dt =
1

u

∫ u

0

1{|Φa(t)|2>A2}dt

≤ 1

uA2

∫ u

0

|Φa(t)|2dt =
1

A2
E (sinc (u(a1 − a2))) .

Assuming first that a1 − a2 does not have an atom at zero, the dominated conver-
gence theorem ensures that E (sinc (u(a1 − a2))) goes to zero as u goes to infinity.
Besides, for every fixed u, it holds that

∫ u

0
1{|Φa(t)|<A}dt goes to zero as A tends to

one. Together, these two conditions ensure the desired result, namely

lim
A→1

sup
|u|>c

1

u

∫ u

0

1{|Φa(t)|>A}dt = 0.

Assume now that a1 − a2 has an atom at zero. Note that a1 − a2 is not a constant
variable since its variance is positive. Thus, for some 0 < c < 1, one can write
Φa1−a2

= |Φa|2 = c+ (1− c)Ψ, where Ψ is the characteristic function of the law of

a1−a2 conditional to a1 �= a2. Since, 1{|Φa(t)|2>A2} ≤ 1{|Ψ|>A2−c
1−c } (with A2−c

1−c → 1

as A → 1), we may apply the previous reasoning to the characteristic function Ψ
which by construction does not have an atom at zero. Under these conditions we
infer that ∫

[0,1]2
Ψ(x, y)dxdy =

∫
R

φ(t)ρ(t)dt ≥
∫
{φ=1}

ρ(t)dt ≥ 1

2
.

Relying on the bound (3.18), if one assumes that |u| ≤
√
n

4CA,B
, then we get the

following crucial estimate:

(3.19)
∑

1≤i≤ord(k)
1≤j≤ord(l)

φ

(
cos

(
iπ

ord(k)

)
cos

(
lπ

ord(l)

))
≥ 1

4
ord(k)ord(l),

which implies that the cardinality of a couple of indexes (i, j) such that

∣∣∣∣Φa

(
u cos

(
iπ

ord(k)

)
cos

(
lπ

ord(l)

))∣∣∣∣ ≤ B,
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is greater than 1
4ord(k)ord(l) provided that

√
n

4CA,B
> |u| > α. Coming back to

(3.16), we may infer that

I2 ≤ nε

∫
√

n
4CA,B

>|u|>α

ΦFn(kπ,lπ)(nu)e
−u2ε2n2

2 du

+ nε

∫
√

n
4CA,B

<|u|
ΦFn(kπ,lπ)(nu)e

−u2ε2n2

2 du

≤ B
n2

4

4CA,B
n
√
n+ nε

∫
√

n
4CA,B

<|u|
e−

u2ε2n2

2 du

=
B

n2

4

4CA,B
n
√
n+

∫
n
√

nε
4CA,B

<|x|
e−

x2

2 dx.

Now let us give the final argument of this proof. If ε ≥ 1
nθ , then n

√
nε ≥ n

3
2−θ and∫

n
√

nε
4CA,B

<|x| e
− x2

2 dx = o
(

1
nθ

)
. Otherwise, if ε < 1

nθ , then

P (|Fn(kπ, lπ)| ≤ ε) ≤ P

(
|Fn(kπ, lπ)| ≤

1

nθ

)

≤ C

(
ε+

1

nθ

)
.

Synthesis. This paragraph makes the synthesis of the two previous subsections.
Note that, in the sequel, C stands for some universal constant which may change
from line to line. Up to using Lemma 7 and doubling the size of the square on which
we consider the nodal line, we will assume that ord(k), ord(l), ord(k+1), ord(l+1) ≥√
n. As a matter of fact, relying on the main estimate (3.11) and Lemma 9, we get

that

P

(
|Fn(kπ, lπ)| ≤ M

(π
√
2)r−1

(r − 1)!

)
≤ C

(
M

(π
√
2)r−1

(r − 1)!
+

1

nθ
+

C

M

)
.

Making an optimization on M , we get

P

(
|Fn(kπ, lπ)| ≤ M

(π
√
2)r−1

(r − 1)!

)
≤ C

⎛
⎝
√

(π
√
2)r−1

(r − 1)!
+

1

nθ

⎞
⎠ .

As a result, provided that θ > 1 + α, we get the existence of an absolute constant
C > 0 such that

(3.20) sup
n,l,k

E(Ln,k,l
1+α) < C.

3.3. End of the proof. In this final subsection, we make a compilation of the
content of all previous subsections to establish the global universality result stated
in the introduction.

Theorem 8. Whatever the law of the entries (ak,l)k,l≥1, as n tends to infinity, we
have

lim
n→+∞

E[�[0,π]2(fn)]

n
=

π2

2
√
3
.
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Proof. Let us recall equation (3.4) which expresses the global expectation as the
sum of the microscopic contributions

E[�[0,π]2(fn)]

n
=

1

n2

∑
0≤k,l≤n−1

E (Ln,k,l) .

Let us fix ε > 0, and introduce Iε := [ε, 1− ε] and

An,ε := (nIε ∩ N)2 .

One first notices that # (An,ε) ≈ (1 − 2ε)2n2. Next, using the bound (3.20), we
may infer that

(3.21)
1

n2

∑
(k,l)∈Ac

n,ε

E(Ln,k,l) ≤
C

n2
#
(
Ac

n,ε

)
≤ C

(
1− (1− 2ε)2

)
.

Let us denote by L∞,k,l the length of the nodal set of the limit Gaussian process
F∞ in the square [kπ, (k + 1)π]× [lπ, (l + 1)π]. Now we shall prove that

(3.22) lim
n→+∞

sup
(k,l)∈An,ε

|E [Ln,k,l]− E [L∞,k,l]| = 0.

To do so, we denote by (pn, qn) ∈ An,ε one pair of integers for which the above
maximum is reached. Next, thanks to Proposition 2 and Remark 3, we infer that
the process

Gn(·, ·) = Fn(pnπ + ·, qnπ + ·)
converges to the nondegenerate stationary Gaussian process G∞. Besides, relying
on Proposition 3, the same conclusion holds for the process F∞(pnπ + ·, qnπ + ·).
Hence, via the content of Subsection 2.3, we indeed obtain that

(3.23) lim
n→+∞

E [φ (Ln,pn,qn)]− E [φ (L∞,pn,qn)] = 0,

for any continuous bounded function φ. Finally, for any M > 0, we have

1

n2

∑
0≤k,l≤n−1

E[Ln,k,l1{Ln,k,l>M}]

≤ C

n2

∑
0≤k,l≤n−1

P (Ln,k,l > M)
α

1+α

≤ C ′

n2

∑
0≤k,l≤n−1

1

M
α

1+α
=

C ′

M
α

1+α
.

As a result, using the limit (3.23) and taking M large enough, we indeed get the
asymptotics (3.22). Finally, putting (3.21) and (3.22) together with Theorem 5, we
get that

(3.24) lim
n→+∞

∣∣∣∣∣∣
1

n2

∑
k,l≤n

E (Ln,k,l)−
π2

2
√
3

∣∣∣∣∣∣ = 0,

which is the desired result.
�
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