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COMPUTABLE TOPOLOGICAL GROUPS

AND PONTRYAGIN DUALITY

ALEXANDER MELNIKOV

Abstract. The well-known Pontryagin Duality (classically) reduces the study
of compact abelian groups to the algebraic theory of discrete abelian groups.
At first glance, Pontryagin Duality seems to be “algorithmic” in nature. Quite
unexpectedly, the situation is more intricate. Nonetheless, using methods of
computable analysis from the work of Weihrauch and modern techniques of

computable algebra (e.g., the recent metatheorem), we establish a partial al-
gorithmic analogy of Pontryagin Duality and use it to derive a handful of
corollaries. We believe that most of these consequences are fundamental to
the emerging systematic theory of computable Polish groups. We also ap-
ply our techniques to measure the complexity of the classification problem for
profinite and connected compact Polish groups.
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1. Introduction

Which topological groups admit algorithmic presentations? Can we classify com-
mon subclasses of compact topological groups – such as profinite abelian groups
– using reasonable invariants? Can we characterize profinite groups that admit a
unique algorithmic presentation? In this paper we combine methods of topologi-
cal group theory, computable analysis, and computable structure theory to answer
questions of this sort.

Metakides and Nerode [MN79] initiated the study of algorithms in topological
groups ([GR93, LR81, Smi81b,MM]), and Mal′cev [Mal62,Mal61] laid the founda-
tions of constructive (discrete) group theory ([EG00,AK00,Khi98]). In this paper
we establish a close technical connection between these two subjects. Thus, the
paper contributes to the general program proposed in [Mel13] which is focused on
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applications of effective algebra to computable analysis (see also [MN16, MN13,
MM,GMKT,McN15,MS]).

1.1. Algorithms in group theory. Algorithmic problems have been central to
group theory for many decades; see, e.g., Novikov [Nov55], Boone [Boo59], Hig-
man [Hig61], and the book [LS01]. In the 1960s Mal′cev [Mal62,Mal61] initiated
the systematic study of infinitely generated groups with a solvable Word Problem.

Definition 1.1 (Mal′cev). A countably infinite group (A,+) is constructive if
there exists an injective numbering of its universe A = {a0, a1, a2, . . .} by natural
numbers, and a Turing machine T such that ai + aj = aT (i,j) for every i, j.

A countably generated group is constructive if and only if it has a group-
presentation

{x1, x2, . . . | r1, r2, . . .}
in which the set of generators and relations are computably enumerable and the
Word Problem is algorithmically decidable.

The theory of infinitely generated constructive groups, and, in particular, of con-
structive abelian groups, has been very popular within the former USSR [EG00,Ers,
Gon81,Khi98,Dob81,Nur74], but some of the key results were independently dis-
covered by experts in the USA and Australia [Lin81,Smi81a,Bar95,Dow97,DK86].
Over the past 60 years the subject has accumulated many results; see the books
[AK00,EG00] and the surveys [Khi98,Mel14]. Of course, such studies have not been
restricted to groups. There has been a lot of work on constructive fields, Boolean
algebras, linear orders, and other structures [Gon97,Dow98,AK00,EG00] (we omit
the general definition).

The development of constructive field theory led to investigations into algo-
rithmic aspects of profinite groups. Based on Metakides and Nerode [MN79],
La Roche [LR81] and Smith [Smi81b] defined and studied recursive profinite groups.

Definition 1.2. We say that a profinite group P is recursive if there exists a
uniformly computable (strong) array of finite groups (Fi)i∈N and surjective homo-
morphisms (φi)i∈N such that the inverse system 0 ←φ0

F0 ←φ1
F1 ←φ2

. . . has
limit P .

We note that recursive profinite groups are exactly the Galois groups of con-
structive Galois field extensions [LR81].

What if a topological group is not profinite? The general theory of computable
topological groups is still to be developed, but a lot of work has been done on
computable Banach spaces and computable Polish spaces [PER89,Wei00,BHW08].
It is natural to extend the classical notions of effectiveness from Polish spaces to
Polish groups. Using approximations by points in a computable dense set, we can
define the notion of a computable function between Polish spaces (to be clarified
in the preliminaries). In particular, it gives the notion of a computable operation
upon a computable Polish space, and thus of a computable Polish group.

Definition 1.3 ([MM]). A computable Polish group is a computable Polish space
equipped with computable group operations (−1 and ·).

We briefly discuss the relationship between Definitions 1.3 and 1.2. Every re-
cursive profinite group is computable Polish (to be explained in Section 5). As a
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consequence of our main results, every computable Polish profinite group has 0′-
recursive presentation (Corollary 1.8), and there exists a computable Polish profi-
nite group with no recursive presentation (Corollary 1.6). (We believe that these
facts are new.)

1.2. A computable version of Pontryagin Duality. Pontryagin Duality is one
of the main tools of abstract harmonic analysis (see the textbook [Fol16]), and it
will also be central to this paper.

Let T = (R,+)/Z. For any topological group G, form its dual group

Ĝ = {χ | χ is a continuous group homomorphism from G to T}.

It is easily seen that Ĝ is itself a topological group under the operation (χ+ξ)(a) =
χ(a)+ ξ(a) and the topology of uniform convergence. A locally compact abelian G

is discrete iff Ĝ is compact abelian, and G compact Polish abelian iff Ĝ is countable
discrete [Pon66,Mor77]. Pontryagin Duality states that if G is compact abelian,

then G ∼= ̂̂
G [Pon66,Mor77]. This means that the discrete dual Ĝ of a compact

abelian G contains all the information about G. Thus, the Duality essentially
reduces the study of compact abelian groups to the algebraic theory of abelian
groups; see, e.g., the book [Lot98]. We note that van Kampen extended the Duality
to arbitrary locally compact abelian groups [Pon66,Mor77], but we will focus on
the compact Polish/discrete countable case.

Our initial (naive) hope was that Pontryagin Duality should behave well with
respect to computable Polish and constructive presentations. If true, it would
reduce the study of computable Polish compact abelian groups to the theory of
constructive (discrete) abelian groups [Khi98,Mel14]. Although the classical proofs
in literature tend to be non-constructive, at first glance the duality may seem fully
uniformly computable. Quite unexpectedly, the situation is a lot more complicated.

Theorem 1.4.

(1) Let G be a constructive abelian group. Then Ĝ is a computable Polish group.
(2) There exists a computable Polish compact abelian group W whose (discrete)

dual Ŵ has no constructivization.

Our proof of part (1) is not uniform and uses a variety of techniques. We will
clarify the difficulty in Proposition 3.3. To circumvent this difficulty, we intro-
duce a new notion of a tractable constructivization (Definition 3.4). Remarkably,
in Lemma 3.5 we prove that this new purely technical property is equivalent to
the existence of a computable Prüfer basis. Dobrica [Dob83] showed that every
constructive abelian group has a constructivization with a computable Prüfer ba-
sis. Dobrica’s original proof relies on clever combinatorics such as the factorial
trick; see [Mel14] for a sketch of the special torsion-free case. Unfortunately, the
proof in [Dob83] is quite compressed and incomplete (we will discuss this further
in Remark 3.9). To clarify the situation, in Proposition 3.10 we give a new and
detailed proof of Dobrica’s theorem that replaces the combinatorics with abelian
group theory and elements of model theory.

In contrast with part (1) of Theorem 1.4, the proof of the “non-effective” part
(2) of Theorem 1.4 is more straightforward, but it does require a new idea. The
proof of (2) also has two important consequences. Recall that a compact group
possesses a unique left-invariant probability measure, the Haar measure. Willem
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Fouche has asked whether every computable compact Polish group has computable
Haar measure. We will show that the group W from the proof of Theorem 1.4(2)
witnesses.

Corollary 1.5. There is a computable compact Polish abelian group in which the
Haar measure is not computable.

Furthermore, we will see thatW is the first known example separating Definitions
1.3 and 1.2 for profinite groups.

Corollary 1.6. There exists a computable Polish profinite group that has no re-
cursive presentation.

Our proofs of the two corollaries above use the third main result of the paper
(Theorem 1.9, to be stated). See Subsection 5.2 for the proofs. Also, see the
Logic Blog (edited by Nies) for a direct proof of Corollary 1.5 that does not use
Theorems 1.4 and 1.9.

There are several further questions related to the effective content of Pontrya-
gin Duality that we leave open (to be discussed in Section 6). In this paper we
concentrate on further applications of Theorem 1.4.

1.3. Applications to classification problems. The computable enumeration of
all Turing machines leads to an effective listing of all (partially) computable Polish
groups:

G0, G1, G2, . . . .

Let K be a class of Polish groups. We follow the general framework [GK02] and
define the index set of K:

I(K) = {i : Gi ∈ K},
and the topological isomorphism problem for K:

E(K) = {(i, j) : Gi, Gj ∈ K and Gi
∼=hom Gj},

where ∼=hom stands for topological group-isomorphism (i.e., homeomorphic isomor-
phism). The more complicated I(K) and E(K) are, the harder it is to classify
members of the class K. We will use arithmetical and analytical hierarchies [Rog87]
to measure the complexity of I(K) and E(K). Our results will be stated in terms
of computable groups, but they can be relativised to any given oracle. Therefore,
the results measure the complexity of the classification problem in general, not the
complexity of only computable objects in the class. See [GK02,DM08] for further
background on applications of recursion theory to classification problems.

It takes a bit of work to show that the index set

CPGr = {i : Gi is a compact Polish group}
is arithmetical, i.e., it is definable by a first-order formula in (N, 0,+,×) (it is Π0

3-
complete; see Proposition 4.1). Since being a compact Polish group is itself an
arithmetical property, it is natural to investigate the complexity of index sets for
various natural subclasses of compact Polish groups.1

Recall that the connected component of the identity element C forms a normal
subgroup, and thus every compact group is an extension of a profinite group by a
connected group. We prove the following.

1We conjecture that in the absence of compactness the index set {i : Gi is a Polish group}
becomes Π1

1-complete.
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Theorem 1.7.

(1) The index sets of profinite and of connected compact Polish groups are both
arithmetical (Π0

2- and Π0
3-complete within CPGr, respectively).

(2) The topological isomorphism problems for profinite abelian groups and for
connected compact abelian groups are both Σ1

1-complete.

The first part of Theorem 1.7 says that both profinite and connected compact
groups admit very low complexity listings among all computable Polish groups,
but these lists contain repetitions of isomorphism types. The proof of part (1)
relies on a careful definability analysis. Since the index sets are complete in their
classes, it follows that the produced formal definitions are optimal. We will use our
definability techniques to establish the above-mentioned.

Corollary 1.8. Every computable Polish profinite group has a 0′-recursive presen-
tation.

In Section 4 we prove a slightly stronger uniform version of this corollary (see
Corollary 4.8). By Corollary 1.6, “0′-recursive” cannot be improved to “recursive”.

The second part of Theorem 1.7 illustrates that removing repetitions from the
listings produced in Theorem 1.7(1) is as hard as it could be. It follows that
deciding whether two profinite (or connected compact) abelian groups are topo-
logically isomorphic is as hard as just saying that there exists a topological group
isomorphism between them, which itself is a Σ1

1-statement (Fact 4.9). Note the Σ1
1-

completeness is witnessed by abelian groups, but as far as we know Theorem 1.7(2)
is new (but far more expected) for compact groups that are not necessarily abelian.
We also note that we could use Theorem 1.4(1) and known results [FFH+12] to
show ≤eff -completeness for both classes, but we omit the definitions and (trivial)
details.

1.4. Profinite abelian groups. Recall that a constructive A is computably cat-
egorical (autostable) iff it has a unique constructivization, up to computable iso-
morphism. Note that a finitely generated constructive algebraic structure is nec-
essarily computably categorical. Thus, computable categoricity can be viewed
as a computability-theoretic generalization of being finitely generated, and there
is enough evidence supporting this intuition; see the books [AK00, EG00]. The
study of computably categorical algebras is central to effective algebra (see the
books [AK00, EG00]), and there has been an increasing interest in computably
categorical Polish and Banach spaces [GMKT,McN15,MS,Mel13].

If a group is profinite, it is more natural to use recursive presentations (Defi-
nition 1.2) rather than computable Polish presentations (Definition 1.3). We say
that a profinite group is computably categorical if it has a unique recursive presen-
tation, up to computable topological group-isomorphism. Can we describe those
Polish abelian groups that are both profinite and computably categorical? The
reader might expect that such groups should be rather simple, but surprisingly the
situation is more complicated. First, we prove the following.

Theorem 1.9. Let P be a profinite abelian group.

(1) P is recursively presentable iff P̂ is constructivizable.

(2) P is computably categorical iff P̂ is computably categorical.
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The proof of Theorem 1.9(1) is quite straightforward, but part (2) requires some
care. The main strength of Theorem 1.9 is in its applications. Some of these
corollaries have already been stated above (e.g., Corollaries 1.6 and 1.5).

It is not hard to see that the duals of profinite abelian groups are torsion [Pon66].
The recent work of Melnikov and Ng [MN] on constructive torsion abelian groups
and Theorem 1.9(2) imply Corollary 1.10.

Corollary 1.10. The index set of computably categorical profinite abelian groups
is Π0

4-complete.

It follows that categoricity in this class is not relativizable; see [MN] for a dis-
cussion. Thus, Corollary 1.10 suggests that one should not expect that there is
a purely algebraic description of computably categorical profinite abelian groups.
On the other hand, these groups admit a rather syntactically and algorithmically
simple listing (without repetition). The main result in [MN] has an involved proof.
Proving Corollary 1.10 directly with profinite groups, i.e., without Theorem 1.9,
would be an even more challenging task.

In contrast, computably categorical pro-p abelian groups do admit an algebraic
description. Theorem 1.9 and the well-known result of Gončarov [Gon80] (and,
independently, Smith [Smi81a]) imply Corollary 1.11.

Corollary 1.11. Let p be a prime. A pro-p abelian group P is computably categor-
ical iff it is homeomorphic to a (topological) direct product of cyclic p-groups and
the group of p-adic integers in which a.e. the factor is equal to some fixed cyclic or
p-adic group.

One can show the effective functor from Theorem 1.9 also preserves computable
dimension, relative computable categoricity, and degree spectra. See [AK00] for the
definitions. These notions can be naturally extended to the category of inverse-limit
presentations of profinite groups up to topological group isomorphism (we omit the
details). As a consequence of [MN], there exists a recursive profinite group which
is computably categorical but not relatively computably categorical. It also follows
from [MN] that the computable dimension of a recursive profinite abelian group is
either 1 or ω. As a consequence of the main result in [KKM13], there exists a pro-p
abelian group whose degree spectrum contains all non-computable Δ0

2-degrees, but
does not contain 0. We note that proving all these results directly with profinite
groups seems totally infeasible.

2. Elements of computable analysis

The standard references for computable analysis are [PER89,Wei00, BHW08].
We will also use elements of abelian group theory [Fuc70, Fuc73] and topological
group theory [Pon66,Mor77]. This section contains definitions and basic facts that
are necessary for the rest of the paper. Further definitions will be given when
necessary.

2.1. Computable maps between computable Polish spaces. Recall that a
real α is computable (Turing [Tur36,Tur37]) if there exists a Turing machine that,
given n ∈ N, outputs a rational r within 2−n of α. A Polish space (M,d) is
computable if there exists a sequence (αi)i∈N of M -points which is dense in M and
such that, for every i, j ∈ N, the distance d(αi, αj) is a computable real, uniformly
in i and j [Wei00].
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Definition 2.1. Let f be a continuous function between Polish metric spaces M
and N . A name of f is any collection of pairs of basic open balls (B,C) such that
f(B) ⊆ C, and for every x ∈ M and every ε > 0 there exists (B,C) ∈ Ψ such that
B � x and r(C) < ε.

It is clear that every continuous function has a name.

Definition 2.2. A function f : M → N between computable Polish spaces M,N
is computable if it possesses a c.e. name.

A function is continuous iff it has an X-c.e. name, where X is some oracle.
In a metric space, we say that a Cauchy sequence (xi) is fast if d(xi, xi+1) <

2−i−1. The above definition of a computable map is equivalent to saying that f is
represented by a Turing functional that maps fast Cauchy sequences to fast Cauchy
sequences (folklore).

Definition 2.3. A computable Polish group is a triple (G,Φ,Ψ), where G is a com-
putable Polish space and Φ and Ψ are (indices for) c.e. names of group-operations
· and −1 upon G.

The definition below is a variation of similar notions that can be found in [Wei01,
MM].

Definition 2.4. Let B,B′ be (closed or open) balls in a Polish space M . We say
that B is formally included in B′ and write B ⊂form B′ if there exists a rational
ε > 0 such that d(cntr(B), cntr(B′)) + r(B) + ε < r(B′).

We write B ⊆form B′ if B ⊂form B′ or B = B′, where the latter means that B
and B′ have the same description as basic open balls (not that they are equal as
sets). Note that B ⊂form B′ implies cl(B) ⊆ B′. It is evident that formal inclusion
of basic balls is Σ0

1.

2.2. The universal compact Polish abelian group. Let T be the circle of
perimeter 1 equipped with the shortest arc metric. Equivalently, T is the unit
interval in R in which the end-points are identified. We say that a point x ∈ T is
rational if the respective point of the unit interval is a rational number. Then T

equipped with rational points is a computable Polish group. The direct product

A =
∏
i∈N

Ti,

of infinitely many identical copies Ti of T carries the natural product-metric

D(χ, ρ) =

∞∑
i=1

1

2−i
di(χi, ρi),

where each of the di stands for the shortest arc metric on Ti. Under this metric
and the component-wise operation A is a computable compact Polish abelian group.
The basic open sets in

∏
i∈N

Ti are direct products of intervals with rational end-
points such that the a.e. interval in the product is equal to the respective Ti. Clearly,
we can effectively list all such open sets. (The exact choice of this basic system
of balls is not crucial, but it will be convenient to assume that the end-points are
rational.) Every compact abelian group can be realized as a closed subgroup of A.
This is explained in the next subsection.
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2.3. The group Hom(G,T). Suppose G = {g0 = 0, g1, g2, . . .} is a countably
infinite discrete group. Let Hom(G,T) be the subset of A =

∏
i∈N

Ti, (each Ti

is a copy of T) consisting of tuples χ = (χi, χ2, . . .), where each such tuple repre-
sents a group-homomorphism χ : G → T such that χ(gi) = χi ∈ Ti ≡ T. Since
G is discrete, every group homomorphism χ : G → T is necessarily continuous.

Thus, Ĝ ∼= Hom(G,T). Since being a group-homomorphism is a universal prop-
erty, Hom(G,T) is a closed subspace of A. Pontryagin Duality implies that every
compact abelian group is homeomorphic to a closed subspace of A. In our later
proofs we will need a more detailed understanding of the dual of a discrete G within
A =

∏
i∈N

Ti. See [Pon66] and Chapter VIII of [Fuc70] for more information on the
duals of elementary groups.

We represent G as the union of its finitely generated subgroups:

{0} ⊆ 〈g1〉 ⊆ 〈g1, g2〉 ⊆ . . . ⊆ 〈g1, g2, ..., gi〉 ⊆ . . . .

It is well known that the character group Hom(G,T) ∼= Ĝ is homeomorphic to
the inverse limit of the system

{0} ← 〈̂g1〉 ← ̂〈g1, g2〉 ← . . . ← . . . ,

where embeddings are defined in a certain canonical way. More specifically, if

f : A → B, then define f̂ : B̂ → Â by the rule f(γ)(a) = γf(a) for every a ∈ A

and each γ ∈ B̂. Recall also that for a cyclic group H, Ĥ is either T (if H ∼= Z) or
a discrete subgroup of T (if H is finite). We thus can “build” a closed subgroup of

A homeomorphic to Ĝ. A reader not familiar with such constructions should look
at the example below.

Example 2.5. Recall A =
∏

i∈N
Ti, where each Ti is a copy of T. Let πi be the

projection of Hom(G,T) onto Ti. Clearly, χ(0) = 0 for any character χ of G, thus

π0(Hom(G,T)) = 0. Suppose 〈g1〉 ∼= Z, and therefore its dual 〈̂g1〉 is homeomorphic
to T. We then declare π1(Hom(G,T)) = T1.

Now consider 〈g1, g2〉 and suppose 2g2 = 0. Then the possibilities for χ(g2) are

exhausted by: χ(g2) = 1/2 or χ(g2) = 0. We have 〈̂g2〉 ∼= Z2. If we were to
stop here, then our dual would consist of arbitrary pairs (x, a), where x ∈ T and
a ∈ {0, 1/2}, under the product topology. The respective (finite) inverse sequence
would be 0 ← T ← T ⊕ Z2, where the second map is the natural projection onto
the first coordinate. We thus declare π2(Hom(G,T)) = {0, 1/2} ⊆ T2 without any
further restriction whatsoever.

If g3 does not generate a new fresh direct summand, then the situation becomes
slightly more complicated. Assume that (say) 2g3 = g1. Then the order of g3 is

infinite, and thus 〈̂g3〉 ∼= T. For any x ∈ T, χ(g3) = x implies χ(g1) = 2x. We
then declare π3(Hom(G,T)) = T3, but we also require 2χ3 = χ2 for each character
χ = (χ0, χ1, . . .) of G. We can proceed in this manner to define the closed set

representing Ĝ within A.

We note that the decision procedure for the projections πi described in the
example above is not necessarily computable (to be illustrated in Proposition 3.3).
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3. The effective content of Pontryagin Duality

3.1. Computably enumerable closed sets. We say that a closed subset C of a
computable Polish metric space M is computably enumerable (c.e.) if

{i : Bi basic open in M and Bi ∩ C �= ∅}
is a computably enumerable set. The fact below will be useful in constructing a

computable copy of Ĝ in Theorem 1.4(1).

Fact 3.1. A closed subset C of a computable Polish space M is computably enu-
merable if and only if C possesses a uniformly computable (in M) dense sequence
of points.

Note that the dense sequence makes C a computable Polish space under the
induced metric.

Proof. Suppose C possesses such a computable sequence (αi)i∈N. Then the density
of the sequence in C implies that Bi ∩ C �= ∅ iff ∃jαj ∈ Bi, which is a uniformly
Σ0

1 statement.
Now suppose C is a computably enumerable closed subset of M . Our goal is

to construct a uniformly computable sequence of points (αi)i∈N that is dense in
C. Without loss of generality, we assume C is infinite. (If C is finite, then it
clearly contains only computable points.) We uniformly approximate the sequence
by stages. Before we describe stage s, we give a technical definition.

Definition 3.2. Two basic open balls U and W are formally s-disjoint if r(U) +
r(W ) < d(cntr(U), cntr(W )) and this can be seen after calculating the radii and
the distance with precision 2−s. We say that U and W are formally disjoint if they
are formally s-disjoint for some s.

At stage 0 fix one basic ball B0,0 of radius < 1 such that B0,0 ∩ C �= ∅. At
stage s > 1 first check whether there exists a basic open ball with index < s which
is formally s-disjoint from B0,s−1, . . . , Bs−1,s−1. If such a basic open B exists,
then choose the first found Bs,s ⊆form B and Bi,s ⊆form Bi,s−1, i < s such
that Bj,s ∩ C �= ∅, the Bj,s are pairwise formally disjoint, and r(Bj,s) < 2−s, j =
0, . . . , s. Otherwise, if no such B exists, fix the first found pairwise formally disjoint
B0,s, . . . , Bs,s that intersect C, have radii < 2−s, and such that Bi,s ⊆form Bi,s−1

for i < s (note there is no further restriction on Bs,s). This ends the construction.
Note that all the conditions (that we check at every stage) are computable. Since

C is infinite, at no stage are we stuck. We then let αi be the unique point of the
Polish space such that {αi} =

⋂
j≥iBi,j . Since the construction is uniform and

the radii of balls are rapidly shrinking, the points αi form a uniformly computable
sequence. Since each of the Bi,j (j = i, i + 1, . . .) intersects C and C is closed,

each αi ∈ C. It remains to check that (αi)i∈N is dense in C. Let (αi)i∈N
be the

completion of (αi)i∈N.

Suppose c ∈ C. We claim that c ∈ (αi)i∈N
. Assume c /∈ (αi)i∈N

, and there is a

ball U centred in c which is outside (αi)i∈N
. There will be a basic open ball B′ � c

of radius at most 2−n and which is formally contained in U with precision 2−n:

d(cntr(U), cntr(B′)) + r(B′) < r(U) + 2−n.

Then at every stage s > n+ 4 the balls Bi,s−1, i = 0, . . . , s− 1 will be formally
s-disjoint from B, as will be readily witnessed by the metric. At some late enough



8718 ALEXANDER MELNIKOV

stage s′ we will get a confirmation that B ∩ C �= ∅. There exist only finitely
many basic balls that have their index smaller than the index of B. Therefore,
eventually B will be used to define Bt,t ⊆form B, contradicting the assumption

that U ∩ (αi)i∈N
= ∅. �

Recall that A =
∏

i∈ω Ti carries a natural computability structure that makes it a
computable compact Polish group. Suppose G is a constructive discrete group. It is
reasonable to ask whether the set Hom(G,T) – considered as a closed subset of A – is
necessarily a computably enumerable closed subset of A. If the answer was positive,

then Fact 3.1 would allow us to build a computable copy of Hom(G,T) ∼= Ĝ. The
negative result below justifies the use of Dobrica’s result in the proof of Theorem 1.4,
but it also has some independent interest.

Proposition 3.3. There exists a constructivization of the free abelian group F of
rank ω such that Hom(F,T) is not a c.e. subset of

∏
i∈N

Ti.

Proof. The constructivization of F will be constructed by stages. In the construc-
tion, for every index e we will reserve two witnesses ae and be in F , and we will
initially keep them in the generating basis of F . Let F = {f0 = 0, f1, . . .}, and
assume ae = fu(e) and be = fv(e). For each e we will also fix two basic open
sets Ae and Be uniquely determined by intervals (7/16, 9/16) and (3/16, 5/16) in
(respectively) Tu(e) and Tv(e):

Ae = T0 × T1 × . . .× Tu(e)−1 × (7/16, 9/16)× Tu(e)+1 × . . .

and

Be = T0 × T1 × . . .× Tv(e)−1 × (3/16, 5/16)× Tv(e)+1 × . . . ,

and let

Ce = Ae ∩Be.

Recall that Tu(e) and Tv(e) are both copies of T. It will be convenient to identify
these two copies with T. In this case we write X ′ and Y ′ to denote the respective
natural images of X ⊂ Tu(e) and Y ⊂ Tv(e) in T.

If ae and be were indeed elements of the generating base of F , then they would
have continuum many elements in Ce ∩ Hom(F,T). We could, however, declare ae
and be linearly dependent arbitrarily late in the construction, and furthermore we
could do it so that the new relation that we impose contradicts

m

p
A′

e ∩B′
e �= ∅.

This idea leads to a straightforward diagonalization, as described below.
To diagonalize against the e’th potential decision procedure for the closed set

Hom(F,T), wait until the procedure declares Ce ∩ Hom(F,T) �= ∅. If this never
happens, then we keep ae and be in the generating basis of F and do nothing. In
this case we will have diagonalized since there must be uncountably many elements
in Ce∩Hom(F,T). If at some stage s we see Ce∩Hom(F,T) �= ∅, then find a prime
p and integer m > 0 that satisfy p

4 > m > s and declare mae = pbe. In this case
1
4 > m

p > 0, and therefore m
p A

′
e ∩ B′

e = ∅. It will lead to a contradiction since the

relation on the group must imply m
p χu(e) = χv(e) for any character χ ∈ Hom(F,T).

However, every character in Ce = Ae ∩Be must fail this property, as witnessed by
m
p A

′
e ∩B′

e = ∅.
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It remains to note that m and p such that p
4 > m > s are necessarily co-prime.

Therefore, the new relation mae = pbe that we introduce to F at stage s will not
imply any relation involving ae and be with smaller coefficients. The only relations
upon ae and be implied by mae = pbe are nmae = npbe, n ∈ Z. Thus, there will be
no contradiction with the piece of F we will have constructed before stage s. �

3.2. Proof of Theorem 1.4(1). Let G be a constructive (discrete) abelian group.

Our goal is to show that Ĝ is homeomorphic to a computable Polish group.

3.2.1. Tractable and effectively predictable presentations. Note that any construc-
tive abelian group G can be represented as the union of a computable ascending
chain of finitely generated groups Gs. Each of the finitely generated groups in the
sequence possesses a direct decomposition into cyclic summands, but these decom-
positions – as well as the isomorphism types of their summands – do not have to
be uniformly computable. We exploited this feature in Proposition 3.3 to construct
a counterexample. We specifically designed the definition below to avoid this bad
scenario.

Definition 3.4. We say that G has a tractable constructivization if there exists a
uniformly computable ascending sequence of f.g. abelian groups (Fi)i∈N with the
following properties:

(1) G =
⋃

i∈N
Fi.

(2) 0 ⊆ F ⊆ F2 ⊆ F3 ⊆ . . . is a uniformly computable sequence in which the
natural embeddings are also computable.

(3) For every Fi we can uniformly compute a finite set of elements h0, . . . , hk(i)

such that the orders of h0, . . . , hk(i) are (uniformly) computable and Fi =
〈h0〉 ⊕ 〈h1〉 ⊕ . . . 〈hk(i)〉.

Lemma 3.5. Suppose (Fi)i∈N is a tractable constructivization of a (discrete and
countable) abelian group G, and let H =

⋃
i Fi. Then Hom(H,T) is a c.e. closed

subset of A =
∏

i∈N
T.

Proof of Lemma 3.5. We need to argue that if (Fi)i∈N is tractable, then the re-
spective inverse limit (see Example 2.5) can be realized as a computable closed
subgroup of

∏
i∈N

Ti. By Proposition 3.3, the proof must make an essential use
of tractability of the constructivization of G. The plan is as follows. We first in-
troduce a certain special kind of closed subgroups of

∏
i∈N

Ti; then we prove that
each such closed subgroup forms a c.e. closed subset of A, and then we argue that

Hom(
⋃

i∈N
Fi,T) ∼= Ĝ is a closed subgroup of this form.

Suppose
∏

i∈N
Ci ⊆

∏
i∈N

Ti is a closed subgroup (and thus so is each of the
Ci ⊆ Ti). Assume further that either Ci = Ti or Ci is finite, and that C0 = {0}.
We say that Ci is defined by a primitive relation if one of the following possibilities
is realized:

(1) there is a j < i and a positive integer k such that every χ ∈
∏

i∈N
Ci satisfies

χi = kχj ,
(2) there is a j < i and a non-negative integer k such that every χ ∈

∏
i∈N

Ci

satisfies kχi = χj ,
(3) there exist u, v < i such that every χ ∈

∏
i∈N

Ci satisfies χi = χu − χv,
(4) there exist u, v < i such that every χ ∈

∏
i∈N

Ci satisfies χi = χu + χv.



8720 ALEXANDER MELNIKOV

In each of the four cases we assume that every finite sequence (χ0, . . . , χi) such
that χj ∈ Cj (j ≤ i) satisfy the respective linear conditions that can be extended
to an infinite sequence χ ∈ C. Note if k = 0 in (2), then essentially there is no
restriction on χi since χ0 = 0. Also notice that some of the components Ci can
have size continuum. This is not a problem though, since all we need is to know
whether Ci is finite or equal to Ti, and the primitive relations (1)-(4) will allow us
to control compatibility of these components in an algorithmically effective manner,
as follows.

We also say that
∏

i∈N
Ci ⊆

∏
i∈N

Ti is effectively predictable if there exists a
uniform algorithm that decides whether Ci

∼= T or not, and if not, then it also
outputs the finite tuple of rationals r0, . . . , rk such that Ci = {ri : i ≤ k} ⊆ Ti.
We say that C is fully effectively predictable if furthermore every Ci is defined by a
primitive relation that can be computed uniformly in i.

Claim 3.6. Every fully effectively predictable (thus, closed) subgroup of
∏

i∈N
Ti is

a c.e. closed subset of
∏

i∈N
Ti.

Proof of Claim 3.6. Suppose we are given a basic open setW = A0×A1×A2×. . . in
which Ai = Ti for every i > n. Now compute the isomorphism types of C0, . . . , Cn

and the respective primitive relations that define Ci. Recall the end-points used in
the definitions of the basic intervals Ai were rational, and thus we can effectively
decide which (rational) points are in Ai ∩ Ci for each i ≤ n. Note that we can
also check whether at least one rational tuple (χ1, . . . , χn) in W satisfies the first n
primitive relations. From this we can decide whether the basic open setW intersects
the subgroup. �
Claim 3.7. Suppose (Fi)i∈N is a tractable constructivization of a (discrete and
countable) abelian group H =

⋃
i Fi. Then Hom(H,T) is fully effectively pre-

dictable.

Proof of Claim 3.7. Suppose H = {h0 = 0, h1, . . .}. Our goal is to define
∏

i Ci ⊆∏
i Ti such that we can effectively decide the isomorphism type of Ci and also list

primitive relations defining each of the Ci ⊆ Ti in terms of some Ck, k < i.
We can effectively refine the sequence (Fi)i∈N witnessing Definition 3.4 and as-

sume that for every i, there exists an a ∈ Fi+1 such that either Fi+1 = 〈a〉 ⊕ Fi or
Fi+1 = 〈Fi, a〉 and for some m we have ma ∈ Fi+1. In the former case the order of a
is infinite, otherwise we can assume we are in the second case (ma = 0 ∈ Fi+1). We
can effectively find full decompositions of Fi and Fi+1, and thus we can effectively
figure out which of the two possibilities is realized, and, in particular, what the
order of a is. Since we need to define characters, we need to specify the index of a
in the enumeration of H = {h0 = 0, h1, . . .}. So suppose a = hj ∈ H.

In the former case, we set Cj = Tj and do not put any restriction (formally, we
declare that 0 · χi = χ0 = 0). For every n there exists an element hk = nhj(= na);
we will set Ck = Tk and declare χk = nχj as the respective primitive relation.
Otherwise, if we have ma ∈ Fi and a = hj ∈ H, then we first see what Ck is for
hk = mhj ∈ Fi, k < j. If Ck = Tk, then we declare Cj = Tj and declare that
χk = mχj . Otherwise, if Ck is a finite closed subset (in which case it must form a
discrete cyclic group), we set Cj ⊂ Tj to be the pre-image of Ck along φ : Tj → Tk

that takes x ∈ Tj
∼= T and outputs mx ∈ Tk

∼= T. We also impose the primitive
relation χk = mχj on Cj . If hs = na = nhj for some n < m, then we use a similar
procedure to decide what Ci is, and we declare χs = nχj for Cs.
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The procedure described above witnesses that
∏

i Ci = Hom(H,T) ∼= Ĝ is fully
effectively predictable. �

Lemma 3.5 follows from the two claims above. �

3.2.2. Tractable groups are exactly the groups with dependence algorithm. Our goal
is to show that all constructive abelian groups admit tractable constructivization.
Recall that elements g1, . . . , gk of an abelian group are Prüfer independent (or
linearly independent) if, for any integer coefficients m1, . . . ,mk,∑

i≤k

migi = 0 implies m1 = . . . = mk = 0.

According to this definition, every set that contains only torsion elements is de-
pendent. We will write Span(B) for the collection of all elements of the group
dependent on B. It should not be confused with the group-theoretic span 〈B〉 of B.
Thus, in particular, Span(∅) = T (G) which is the torsion subgroup of G. There-
fore, we are really looking at a basis in the torsion-free G/T (G). (See Fuchs [Fuc70]
for an alternate approach related to p-basic subgroups.) Recall that a subgroup
H of an abelian A is pure (in A) if for any h ∈ H and each positive integer k
∃a ∈ A ka = h implies ∃u ∈ H ku = h. It is well known that a pure f.g. subgroup
of an abelian group A detaches in A (i.e., forms a direct summand of A).

Lemma 3.8. Let G be a constructive (discrete) abelian group. The following are
equivalent:

(1) G is tractable.
(2) G has a computable basis.

We will be using only (2) ⇒ (1) and therefore our proof of (2) ⇒ (1) will be
somewhat compressed. Nonetheless, the reader should agree that (1) ⇐⇒ (2) is
worth noting.

Proof of Lemma 3.8. Suppose G has a computable basis B = {b1, b2 . . .} (we in-
clude the possibility of B being finite or empty). We can effectively list the torsion
subgroup T (G) of G. At every stage we will be enumerating more of B and more
of T (G). Suppose at a stage we have effectively defined an f.g. partial subgroup

Gs = 〈h1, . . . , hk; t1, . . . , tm〉 �t,
where k, t and m will depend on the stage, the hi are linearly independent in
G/T (G), and the tj are torsion elements. We also assume that we can effectively see
this information about the isomorphism types of the summands (this is a recursive
argument).

We may assume that Span(h1, . . . , hk) = Span(b1, . . . , bk) in G/T (G). Further-
more, w.l.o.g. each tj generates a (finite and primary) cyclic summand of Gs, and
each hi generates a finite initial segment of the infinite cyclic group:

Gs = 〈h1〉 �t ⊕ . . .⊕ 〈hk〉 �t ⊕〈t1〉 ⊕ . . .⊕ 〈tm〉.
Suppose a new element h enters the enumeration of the group. We will then

keep adjoining elements bk+1, bk+2, . . . from the basis B to h1, . . . hk (note that
{h1, . . . , hk, bk+1, bk+2, . . .} forms a basis of G), and we will keep adjoining new
elements from T (G) to Gs. At a later stage we will have an f.g. partial group

G′
u = 〈h1〉 �u ⊕ . . .⊕ 〈hk〉 �u ⊕〈bk+1〉 �u ⊕ . . .⊕ 〈bk′〉 �u ⊕T (G′

u)
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containing Gs. We keep doing so until we find a linear combination

mh =
∑
i≤k

nihi +
∑

k≤j≤k′

n′
jbj + t,

where t ∈ T (G′
u). We now are ready to define Gs+1. It will be a large enough finite

partial subgroup approximating the 〈h,G′
u〉. Note that 〈h〉 is pure in 〈h,G′

u〉, and
therefore it detaches as a direct summand,

〈h,G′
u〉 = 〈u〉 ⊕H.

We choose any direct decomposition of H into cyclic summands, and we wait until
a late enough stage v such that the generators of all these summands appear in the
enumeration of G at stage v. Then we set Gs+1 = 〈h,Gu〉 restricted to this stage.
We also put the respective generators of Gs+1, the information about their orders,
and the natural embedding of Gs into Gs+1, as the additional information about
Gs+1. (Note that the orders of these generators of Gs+1 can be found uniformly
effectively using Gs and its decomposition.) Clearly, the Prüfer span of the genera-
tors of the infinite cyclic summands will be equal to Span(b1, . . . , bk′), which is the
part of the basis we’ve used so far.

Strictly speaking, (Gs)s∈N is a sequence of finite partial subgroups, not a se-
quence of subgroups of G (as required). Otherwise, all the other properties that we
need are satisfied by the sequence (Gs)s∈N. But note that G =

⋃
i∈N

〈Gs〉. Based
on this observation, we claim that 〈Gs〉 is a uniformly computable subgroup of G.
Indeed, for any g ∈ G wait for g ∈ Gv (s ≤ v), and then use the information about
Gv, its generators, and how Gs is embedded into Gv to see if g ∈ 〈Gv〉. Finally,
observe that all the embedding of 〈Gs〉 into 〈Gs〉 is completely described by the
embedding of Gs into Gs+1. Thus, G =

⋃
i∈N

〈Gs〉 witnesses that G is tractable.
Conversely, suppose G is a tractable constructive group, and let (Fi)i∈N be an

ascending sequence of its subgroups witnessing its tractability. Suppose we have
g1, . . . , gk ∈ G. Then for some large enough m we must have g1, . . . , gk ∈ Fm. Since
we can compute a full decomposition of Fk, we can decide whether g1, . . . , gk are
independent just by analyzing the matrix of the projections of g1, . . . , gk onto the
infinite cyclic summands in the decomposition. (Attempt to transform the matrix
into a diagonal one using integer elementary operations; then see whether the result
has zero entrees along the main diagonal.) We can use the dependence algorithm to
produce a computable basis of the group in the usual way (see, e.g., [Mel14]). �

3.2.3. A new proof of Dobrica’s theorem. Recall that tractability is equivalent to
having a linear dependence algorithm. Thus, to show that every constructive
abelian group has a tractable copy, it is sufficient to use the result of Dobrica [Dob83]
saying that every constructive abelian group has a copy with computable basis. As
we promised in the introduction, in this subsection we give a new and very detailed
proof of the result of Dobrica.

Remark 3.9. We also discuss the problem with the proof in [Dob83]. The proof
does not explain why partial embeddings at intermediate stages preserve the partial
diagram of the group built so far. This is the key subtlety in the proof, but it is
not even briefly mentioned. Dobrica uses a rather elaborate choice of coefficients
at intermediate stages (e.g., ki

mt!
k ), but this particular choice is never clarified.

We believe that Dobrica’s sketch can be adjusted and extended to a complete and
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correct proof, but we chose to give a new proof that avoids dealing with complicated
coefficients.

Recall that the cardinality of any basis is called the rank of an abelian G. The
rank of a subset X of G is the rank of the subgroup generated by this set. If the
rank of G is finite, then it has a computable basis.

Proposition 3.10 (Dobrica). There exists a uniform procedure which transforms
any constructive abelian G of infinite rank into a constructive H ∼= G that has a
computable Prüfer basis.

Proof of Proposition 3.10. Clearly, the linear span (defined above) is a closure op-
erator and therefore it induces an r.i.c.e. pre-geometry; see [HTMM15] or the book
[Mar02] for definitions. For the rest of the proof it is not really necessary to know
what an r.i.c.e. pre-geometry is. We will only use that x, y are independent over a
subset X if x /∈ Span(X ∪{y}) and y /∈ Span(X ∪{x}). We also say that such x, y
are interchangeable over X if Span(X ∪ {y}) = Span(X ∪ {x}).

The independence diagram I(c̄) of c̄ in G is the collection of all existential for-
mulas true of tuples independent over c̄. We say that independent tuples in G are
locally indistinguishable if for every tuple c̄ in G, any ū, v̄ independent tuples over c̄,
and each existential formula φ such thatG |= φ(c̄, ū) there exists a tuple w̄ that is in-
dependent over c̄, has G |= φ(c̄, w̄), and (with w̄ = (w1, ..., wn) and v̄ = (v1, ..., vn))
we have wi ∈ Span(c̄, v1, ..., vi). According to the metatheorem from [HTMM15],
it is sufficient to check that tuples in G are locally indistinguishable and that for
each tuple c̄ its independence diagram is c.e. uniformly in c̄.

The intuition is that c̄ is the part of the basis we’ve built at a stage, and φ
is the part of the open diagram we’ve listed. Later we may discover that ū is
dependent over c̄, and we will need to correct our embedding. To make sure that
the embedding can always be corrected, we always check whether facts we wish to
enumerate in the open diagram are consistent with I(c̄). The proof can be viewed
as a finite injury construction, and the metatheorem allows us to separate algebra
from recursion theory. See [HTMM15] for more detail. In [HTMM15] we also
required rank(c̄) ≥ 2 in the definition of locally indistinguishable tuples. This was
necessary to cover ordered abelian groups; this assumption can be ignored in our
case. Without this extra assumption, the metatheorem from [HTMM15] becomes
uniform.

Lemma 3.11. Prüfer independent tuples are locally indistinguishable in G.

Proof. Suppose ū = (u1, ..., un) is independent over c̄, and assume G |= ∃x̄φ(c̄, ū, x̄).
Fix b̄ in G witnessing the existential quantifier. Let v̄ = (v1, ..., vn) be any other
tuple independent over c̄. We must find a tuple w̄ = (w1, ..., wn) independent over
c̄ such that G |= ∃x̄φ(c̄, w̄, x̄) and wi ∈ Span(c̄, v1, ..., vi), i = 1, . . . , n. We give a
very detailed proof.

Let X = 〈c̄, ū, b̄〉 � G. Suppose c̄ = c̄′c̄′′, where c̄′ consists of independent
elements and c̄′′ belongs to the (linear) span of c̄′. Note that 〈c̄′, ū〉 forms a free
abelian subgroup of 〈c̄, ū, b̄〉 of rank |c′u|. It is well known that for any f.g. abelian
groups U � V there exist full decompositions 〈u1〉⊕ 〈u2〉⊕ . . . and 〈v1〉⊕ 〈v2〉⊕ . . .
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of U and V into cyclic summands such that for some choice of integers m1,m2, . . .
we have ui = mivi, i = 1, 2, . . . [Fuc70]. We apply this fact to 〈c̄, ū〉 � 〈c̄, ū, b̄〉 to
obtain a tuple h̄ = h̄′h̄′′ in 〈c̄, ū, b̄〉 such that:

(1) h̄′ has the same length (and rank) as the tuple c′u,
(2) 〈c̄, ū〉 � 〈h̄〉 (but not equal, in general),
(3) 〈h̄〉 is a direct summand of 〈c̄, ū, b̄〉, say 〈c̄, ū, b̄〉 = 〈h̄〉 ⊕W,
(4) 〈h〉 = 〈h′〉 ⊕ 〈h′′〉.

In particular, (1) implies that 〈h̄′〉 is free abelian. Within 〈h̄′〉, it makes sense to
define the least pure subgroup 〈c̄′〉∗ of 〈h̄′〉 containing c̄′. It detaches in 〈h̄′〉, say
〈h̄′〉 = 〈c̄′〉∗⊕U. Every ui in ū is (linearly) interchangeable with its projection onto
U (over c̄′ and equivalently over c̄). Let u′

1, u
′
2, . . . ∈ U be these projections. We

would like to come up with a linearly independent set of generators z̄ = (z1, z2, . . .)
of U such that zi and u′

i are linearly interchangeable in U over Span(c̄, u′
1, . . . , u

′
i−1).

This is done as follows. First, consider the least pure subgroup H1 of U that con-
tains u′

1. It must be cyclic and infinite and suppose it is generated by z1. Clearly, z1
and u′

1 are interchangeable, and U = H1 ⊕K1. Take the K1-projections u
′′
2 , u

′′
3 , . . .

of the remaining elements of ū′. Observe that u′′
2 , u

′′
3 , . . . are interchangeable with

u′
2, u

′
3, . . . over Span(u

′
1) = Span(z1). We repeat the process with u′′

2 and K1 play-
ing the roles of u′

1 and U , respectively, to define H2,K2 and u′′′
3 , u′′′

4 , . . ., etc. At
every step we will have a further direct decomposition and a new tuple interchange-
able with the original one over the respective initial segment of ū′. We will arrive
at a generating set z1, z2, . . . of U such that the zi and u′

i are interchangeable over
Span(u′

1, . . . , u
′
i−1). Since ui and u′

i were interchangeable over c̄
′ (equivalently, over

c̄), we have that ui and zi are interchangeable over Span(c̄, u1, . . . , ui−1).
Recall that 〈h〉 = 〈h′〉 ⊕ 〈h′′〉, and since |h′| = rank(h′) = rank(c′u) = |c′u|, it

follows that 〈h′′〉 must be torsion. Furthermore, the projection of c̄′′ onto U must
be trivial, for otherwise the rank of c̄′′ over c̄′ would not be zero. Therefore, c̄ is
contained in 〈c̄′〉∗ ⊕ 〈h′′〉.

Thus, for some f.g. W � G,

〈c̄, ū, b̄〉 = 〈c̄′〉∗ ⊕ 〈h̄′′〉 ⊕ 〈z̄〉 ⊕W,

where z̄ is interchangeable with ū over c̄ in a strong sense (see above), and c̄ is
contained in 〈c̄′〉∗ ⊕ 〈h′′〉.

Recall v̄ was the other tuple independent over c̄ and of the same length as w̄.
As above, (but ignoring b̄) we can split 〈c̄v̄〉 into a direct sum

〈c̄′〉∗∗ ⊕ 〈f̄ ′′〉 ⊕ 〈ȳ〉,

where c̄ is in 〈c̄′〉∗∗ ⊕ 〈f̄ ′′〉, 〈f̄ ′′〉 is torsion, and ȳ is interchangeable with v̄ over
c̄ in the strong sense as we had above (for ū). Note that W perhaps contains
infinite cyclic summands, some of which may interact with 〈ȳ〉. But the rank of
G is infinite, and thus we can replace W by an isomorphic subgroup W ′ such that
there is no such interaction. The new f.g. subgroup 〈c̄′〉∗ ⊕ 〈h̄′′〉 ⊕ 〈z̄〉 ⊕ W ′ will
be isomorphic to the original one under an isomorphism that fixes c̄ and ū. Thus,
we assume 〈ȳ〉 ∩ W = 0. We have that W = T (W ) + X, where T (W ) is torsion,
and X is free abelian whose generating basis is independent over c̄ȳz̄. Consider the
torsion group T = 〈f̄ ′′〉 + 〈h̄′′〉 + T (W ). Also, consider C = 〈c̄′〉∗ + 〈c̄′〉∗∗ whose
rank is equal to the rank of c̄. It follows that T + C contains c̄. By the choice of
X, its generating basis is independent over c̄ȳz̄. We arrive at two isomorphic direct
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decompositions,

(C + T )⊕X ⊕ 〈z̄〉 and (C + T )⊕X ⊕ 〈ȳ〉,
both are embeddable into G. Consider the natural isomorphism τ that fixes (C +
T ) ⊕ X and maps z̄ to ȳ. Then τ fixes c̄. Furthermore, the tuple ū is mapped
to some tuple w̄ which is interchangeable, in the strong sense as above, with the
tuple ȳ over c̄. Thus, it is also interchangeable (in this strong sense) with the tuple
v̄ over c̄. In particular, w̄ is independent over c̄ and satisfies the desired property
wi ∈ Span(c̄, v1, ..., vi). Since τ is an isomorphism, it preserves the validity of φ. �

Lemma 3.12. For any c̄, the independence diagram I(c̄) of c̄ in G is c.e. uniformly
in c̄.

Proof. We must effectively list all existential formulae ∃x̄φ(c̄, ȳ, x̄) such that G |=
∃x̄φ(c̄, ū, x̄) for some ū which is independent over c̄. We have already proven that
any existential formula over c̄ū, where ū is independent over c̄, is witnessed within
a finite initial segment of an f.g. subgroup of G of the form

(C + T )⊕X ⊕ F,

where C+T is an f.g. subgroup of G that contains c̄, andX and F are free abelian of
finite rank such that ū is interchangeable, over c̄, with the basis of F . Furthermore,
since the rank of G is infinite, for any f.g. (C + T ) extending c̄ and any given free
X and F , we can isomorphically embed (C +T )⊕X ⊕F into G. We can certainly
list all f.g. subgroups of G extending c̄, all free abelian groups of finite rank, and all
potential ū independent over c̄. This gives a computable enumeration of I(c̄). �

Proposition 3.10 follows from the two lemmas above and the metatheorem from
[HTMM15]. �

3.2.4. Finalizing the proof of Theorem 1.4(1). Using Proposition 3.10 we transform
G into H having a computable basis. By Lemma 3.8, H is tractable. Lemma 3.5
guarantees that Hom(H,T) is a c.e. closed subset of computable Polish group A. We
use Fact 3.1 to produce a uniformly computable (in A) sequence of points that is
dense in Hom(H,T). Since the natural group operations are computable on A, their
restrictions to Hom(H,T) are computable as well, with respect to the computable

dense subset of Hom(H,T). This gives a computable Polish presentation of Ĝ.

3.3. Proof of Theorem 1.4(2). Let S be an infinite set of prime numbers. Ob-
serve that the (discrete, countable) group

GS =
⊕
p∈S

Zp

has a constructivization if and only if S is computably enumerable. Therefore, it is

sufficient to build a set S which is not c.e. but such that ĜS is a computable Polish
group.

We will simultaneously construct S and an approximation to ĜS which will be

viewed as a closed subset of
∏

i∈N
Ti. Note that ĜS is profinite and is homeomorphic

to the inverse limit of (
⊕

p∈S�n Zp)n∈N. To make sure S is not c.e., it is sufficient to

satisfy We �= S for every e, where We is the e’th c.e. set (as usual). To ensure ĜS

is computable, at every stage we will be deciding its “current position” in
∏

i∈N
Ti,

but only with precision 2−s (to be clarified). We will see that we can meet all
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the diagonalization requirements without upsetting this global strategy. We now
describe the diagonalization module for We.

The group U will be the inverse limit of the form

U = lim←−Un,

where Un =
⊕

i<n Ci under the natural surjective projections ψn+1,n :
⊕

i<n+1 Ci

→
⊕

i<n Ci with kernel Cn+1. The primary cyclic Ci will be represented as closed
subgroups Ti, and each such Ci will be defined by one of the basic modules (to be
discussed below).

The basic module for e.

(1) Reserve a large fresh prime qe and keep qe in S and wait for qe to enter We.
(2) While waiting, attempt to witness qe ∈ S by making a better approximation

to Zqe within Te. This is done as follows. At stage s we commit ourselves to
the interval (1/qe−2−s, 1/qe+2−s) and pretend that this interval contains
the generator of the Te-projection of our group. Note that if qe /∈ We then
these intervals will shrink to 1/qe making the projection isomorphic to the
closed subgroup Zqe of Te.

(3) If the prime qe enters We at stage s, then:
(a) Choose a large fresh prime ue so that for some integer k we have

kue ∈ (1/qe − 2−s, 1/qe + 2−s).

(b) Switch from approximating Zqe within Te to approximating Zue
, as

follows. Choose ne large enough so that

(kue − 2−ne−s, kue + 2−ne−s) ⊂ (1/qe − 2−s, 1/qe + 2−s).

From now on, at stage s′ > s we will declare that the generator of
the Te-projection of the group is within 2−n0−s′ of 1/ue. This way we
build a copy of Zue

within Te. Now whenever we have to improve our
approximation of the generator 1/ue within Te, we commit ourselves
to

(1/ue − 2−n0−s′ , 1/ue + 2−n0−s′).

(c) Permanently keep ue in S and qe out of S. (In particular, do not allow
any other basic module to use these primes.)

Construction. At stage s of the construction we let the first s basic modules
act according to their instructions. Note that there is no interaction between the
basic modules. At any stage s, once we’ve defined our current approximation to gi,
we also define an approximation to ngi naturally (with |n| ≤ s ), according to the
definition of the computable operations in

∏
i∈I Ti.

Verification. The result of the construction is a uniform approximation (by
shrinking intervals) of a sequence of points in Te. Our group U will be represented
as the subgroup of

∏
e∈N

Te consisting of infinite sequences of the form

(n0g0, n1g1, n2g2, . . . , nege, . . .),

where ne ∈ Z and the ge are the generators of Ce � Ti.
Note that we can change our mind about the generator of Ce and switch from

approximating Ce
∼= 〈1/qe〉 to Ce

∼= 〈1/ue〉 within Te, but this happens at most
once for a fixed e. This switch will be consistent with what we’ve declared so far
because we choose the approximation of 1/ue to be a sufficiently small interval (see
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substage (b) in (3) above). We simply add a new very small interval around 1/ue

and proceed consistently with what we’ve declared so far.
Note that, by construction, the closed subgroup that we’ve built forms a c.e.

closed subspace of T. It follows from Fact 3.1 that the group is a computable
Polish group. (We note that in this copy the standard group operations are in fact
effectively open.) However, we have explicitly made sure that the discrete countable

dual Û = GS =
⊕

p∈S Zp of U has no constructivization.

4. Proof of Theorem 1.7

4.1. Proof of Theorem 1.7(1). Recall the definitions of a computable function
between computable Polish spaces and the formal definition of a computable Polish
group (Definitions 2.1 and 2.3). Fix an effective listing G0, G1, . . . of (partially)
computable Polish spaces in which every Gi is additionally equipped with a pair
of c.e. sets that are interpreted as names of partial operations on Gi. We need
to measure the complexity of the index sets of profinite and compact connected
groups. The first step is to measure the complexity of being a compact group.

Proposition 4.1. The index set CPGr = {i : Gi is a compact Polish group} is
Π0

3-complete.

Proof of Proposition 4.1. Recall that compactness is equivalent to total bounded-
ness. Thus, we need to state that for every rational q there exists a cover of M by
(closed) basic balls of size at most q, which is a Π0

3-property. See Nies and Mel-
nikov [MN13] for further details. Given a triple (G,W,U), where G is a (partial)
computable structure on a Polish space and W,U are c.e. sets, we need to guess
whether W and U are names of computable group operations on G.

Lemma 4.2. Let G and M be compact computable Polish spaces. Then

{e : We is a name of a computable f : G → M}
is Π0

3, uniformly in G and M .

Proof. For technical convenience, we will use the following uniform variation of
Definition 2.1.

Definition 4.3. Let f be a continuous function between Polish metric spaces M
and N . A ∗-name of f is any collection of pairs of basic open balls (B,C) such that
f(B) ⊆ cl(C), and for every x ∈ M and every ε > 0 there exists (B,C) ∈ Ψ such
that B � x and r(C) < ε.

We can uniformly pass from a ∗-name of f (Definition 4.3) to a name of f
(Definition 2.1) and back.2 The uniform procedure of passing from a name to a
∗-name can be applied to any c.e. set W . We denote the resulting c.e. set by W ∗.
Then W is a name iff W ∗ is a ∗-name (of the same function).

Fix a c.e. set Ψ and interpret it as a set of pairs of basic open balls with rational
radii:

Ψ = {(C,B) : C,B basic open in G,M, resp.}.

2Suppose Ψ is a name of f . Since f(B) ⊂ C implies f(B) ⊂ cl(C), every ∗-name is a name.
Now suppose Ψ is a ∗-name of f . Using ε/2 instead of ε in Definition 4.3, fix (B,C) with r(C) < ε/2
such that x ∈ B and f(B) ⊂ cl(C). Replace C with an equicentric C′ ⊃ C s.t. r(C) < r(C′) < ε.
We have f(B) ⊂ cl(C) ⊆ C′ and r(C′) < ε.
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Uniformly transform it into a c.e. set Ψ∗. To make sure that Ψ∗ is a name of a
computable operation, we require that Ψ∗ additionally satisfies:

(1) For every (B0, C0), . . . , (Bn, Cn) ∈ Ψ∗,
⋂

i Bi �= ∅ implies
⋂

i Ci �= ∅.
(2) For each rational ε > 0 there exists a finite cover B0, . . . , Bk of G and

(B0, C0), . . . , (Bk, Ck) ∈ Ψ∗ such that r(Ci) < ε, i = 1, . . . , k.

We first check that (1) and (2) are (at most) Π0
3, and then we prove that they

capture the property of being a name.

Claim 4.4. The properties (1) and (2) are (at most) Π0
3.

Proof of Claim 4.4. Since intersection of open sets must be witnessed by special
points from the respective computable structures, it is clear that (1) is Π0

2. It is
less obvious why (2) has to be Π0

3. The problem is that the union of B0, . . . , Bk

may contain all special points but still do not cover the whole G. To show that (2)
is Π0

2 we need to slightly modify it. Consider the condition:

(2)∗ For each rational ε > 0 there exists a finite cover cl(B0), . . . , cl(Bk) of G
and (B′

0, C0), . . . , (B
′
k, Ck) ∈ Ψ∗ such that Bi ⊆form B′

i and r(Ci) < ε,
i = 1, . . . , k.

Here Bi ⊆form B′
i means that either Bi is identical to B′

i or Bi ⊂form B′
i; see

Definition 2.4. Recall that formal inclusion ⊂form is Σ0
1. Also, being a closed cover

is a closed property and thus can be checked only for special points. It follows that
(2)∗ is of the form ∀∃(∀&∃), i.e., is Π0

3. It remains to check that (2) ⇐⇒ (2)∗.
Since the B′

i from (2)∗ cover G, it follows that (2)∗ implies (2). For any open cover
B0, . . . , Bk from (2), G ⊂ cl(B0) ∪ · · · ∪ cl(Bk). Since Bi ⊆form Bi for each i, we
can use the Bi themselves (instead of B′

i) to witness (2)∗. �

Clearly, if Ψ∗ is a ∗-name of a computable operation f : G → M , then Ψ∗

satisfies (1) and (2) (recall G is compact).

Claim 4.5. If Ψ∗ satisfies (1) and (2), then it is a ∗-name of a computable operation.

Proof. We define a map ψ as follows. For every x ∈ G, choose (B,C) ∈ Ψ∗ such that
x ∈ B and declare C a Ψ∗-neighbourhood of ψ(x). (Note that if x is a computable
point, then this process is effective.) Then set ψ(x) to be equal to any point in the
intersection ⋂

{cl(B) : B is a Ψ∗-neighbourhood of ψ(x)}.
Property (1) implies that any two Ψ∗-neighbourhoods of ψ(x) have a non-empty in-
tersection. Let Cn be the closure of the intersection of the first nΨ∗-neighbourhoods
of ψ(x) in any (not necessarily effective) list of such neighbourhoods. Then (Cn) is
a nested sequence of non-empty compact sets, thus it has a non-empty intersection.
Property (2) guarantees that for every ε there exists a Ψ∗-neighbourhood of ψ(x)
of size ε. Therefore, the intersection is a singleton. We conclude that ψ is a (total)
function.

We claim that Ψ∗ is a ∗-name for ψ. Property (2) implies that for every ε > 0
there exists (B,C) ∈ Ψ∗ such that B � x and r(C) < ε. It remains to show that
for each (B,C) ∈ Ψ∗ we have ψ(B) ⊆ cl(C). Fix x ∈ B. Then

{ψ(x)} =
⋂

{cl(B) : B is a Ψ∗-neighbourhood of ψ(x)}.

Since C is a Ψ∗-neighbourhood of ψ(x), in particular, ψ(x) ∈ cl(C). �
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To finish the proof of the lemma, observe that our analysis was fully uniform in
the computable structures on G and M . �

We return to the proof of Proposition 4.1. The product space G×G is compact.
There is a uniform procedure that, given a computable Polish space G, outputs a
computable presentation of G ×G. It follows from Lemma 4.2 that this index set
of Polish spaces equipped with two well-defined computable operations is Π0

3. To
finish the proof of Proposition 4.1, recall that the group axioms are closed properties
and thus can be checked only for special points. (Set e = x · x−1 for the first found
x.)

Since completeness will not be used in the proof of Theorem 1.7(1), we give only
a sketch. Represent a Π0

3-predicate in the form ∀x∃<∞yP (x, y, z), and code z into
the surjective inverse limit of discrete groups (Gx). For each fixed x, Gx will be
the direct sum of several copies of Z2. There will be finitely many Z2-summands
in all such Gx iff ∃<∞y for all x. Then the group is computable Polish and totally
disconnected, but it will be compact (thus, profinite) iff the Π0

3-predicate holds.
The construction can be viewed as a finite injury one. We leave the details to the
reader. �

Proposition 4.6.
1. The index set of connected compact Polish groups is Π0

2-complete within com-
pact groups.

2. The index set of profinite Polish groups is Π0
3-complete within compact groups.

Proof. We prove 1. Let G be a compact Polish group (see Proposition 4.1). Since
G is compact, G is disconnected iff there exists a finite collection of basic open
B1, . . . , Bk, D1, . . . , Dn such that

cl(
⋃
i≤k

Bi) ∪ cl(
⋃
j≤n

Dj) = G and cl(
⋃
i≤k

Bi) ∩ cl(
⋃
j≤n

Dj) = ∅.

If cl(
⋃

i≤k Bi) ∪ cl(
⋃

j≤nDj) �= G, then there is a special point outside this set, so

the property is Π0
1. We claim that, for any basic open balls B(x, r) and B(y, q),

the property cl(B(x, r)) ∩ cl(B(y, q)) �= ∅ is equivalent to

∀ε > 0 B(x, r + ε) ∩B(y, q + ε) �= ∅,

which is clearly Π0
2. If cl(B(x, r)) ∩ cl(B(y, q)) �= ∅, then the property above holds

for every ε > 0. On the other hand, suppose zε witnesses B(x, r + ε) ∩ B(y, q +
ε) �= ∅. Then (z2−n)n∈ω has a converging subsequence. Let z be the limit of this
subsequence (we use compactness of G). It follows that d(x, z) ≤ r and d(y, z) ≤ q,
as required. The property cl(

⋃
i≤k Bi) ∩ cl(

⋃
j≤nDj) = ∅ can be expressed as a

finite Boolean combination of such Σ0
2-statements. It follows that connectedness is

a Π0
2-property of a compact G.

Remark 4.7. In the notation as above, cl(B(x, r)) ∩ cl(B(y, q)) = ∅ iff ∃ε >
0 B(x, r + ε) ∩ B(y, q + ε) = ∅. Since there are only finitely many balls involved
overall, we can pick the least rational ε witnessing the required empty intersections.
Thus, using 0′ we can uniformly produce two finite disjoint collections of open balls
(if they exist). In the proof of the second part and in Corollary 4.8 we will alternate
between using closed and open names for such clopen sets.
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To see that it is Π0
2-complete within compact groups, start enumerating rational

points in T. Add more points only if the predicate fires. We will end up with a
computable copy of T iff the predicate fires infinitely often, and we will have a finite
(thus, totally disconnected) subgroup of T otherwise.

We prove 2. Recall that a compact Polish group is profinite iff its neutral element
1G has a basis of normal clopen subgroups. Recall also that a closed subgroup of a
profinte group is itself profinite. Consider the following procedure. Let D0 = G. At
stage s > 0 let Ds be the first found clopen subgroup such that the diameter of Ds

is at most 2−s and Ds ⊆ Ds−1 (if such Ds exists at all). To find a clopen subgroup,
we use 0′ to verify the Σ0

2-definition of a clopen set (see above). For that, search
for finitely many closed balls witnessing that the group is disconnected, where the
union of the first k of them together form a normal subgroup.

Since all involved sets are clopen, it is sufficient to check the inclusion, the
diameter, normality, and the group operations only for special points. Note that
the set is represented as a finite union of open basic balls (Remark 4.7). Note that
we can (uniformly in the description) list all special points that are contained in
these open balls, and they will give a computable structure on the subgroup. The
next iteration can use this finite description as its input instead of G. It follows that
0′ is capable of uniformly finding such a Ds (if it exists), and thus ∀s(Ds is defined)
is a Π0

3-statement equivalent to profiniteness for a compact group G.
The Π0

3-completeness part is similar to Π0
2-completeness above, for connectedness

groups. Given a Π0
3-predicate and an element on which the predicate needs to be

tested, produce a (topological) direct product
∏

x∈ω Gx. Make sure that Gx is a

finite subgroup of T iff Σ0
2 holds on x, and build a copy of T otherwise. Then

∏
x Gx

is profinite iff ∀x (Σ0
2 holds on x). Note that in any case the group is compact.

This finishes the proof of the proposition, and of the first part of Theorem 1.7. �

Note that the procedure described in the proof of Proposition 4.6 leads to:

Corollary 4.8. There exists a uniformly 0′-computable procedure which, on input
a computable Polish presentation of a profinite group G, produces its 0′-recursive
presentation.

Proof of Corollary 4.8. Using 0′ we can list a basis of e consisting of clopen normal
subgroups. For any such fixed clopen N , G/N is finite. Note that every coset of
the form x̃N is open and thus contains a special point x, in particular, every coset
is of the form xN for some special x. We claim that, given such an N , 0′ can find
finitely many special points x0 = e, x1, . . . , xn such that {xiN} is a disjoint cover
of G. To see why, note that xiN ∩ xjN �= ∅ iff for some special y, yx−1

i ∈ N

and yx−1
j ∈ N , both events are c.e. in the finite description of the clopen set N

by finitely many basic open balls (see Remark 4.7). Also, since left-translation
is a self-homeomorphism of G onto itself and N is clopen, each xiN is clopen as
well. Thus, {xiN} is a (closed) cover iff for every special y there is an i such that
yx−1

i ∈ N ; if we view the latter as a finite union of closed balls (Remark 4.7), then
the statement becomes Π0

1 and thus can be decided using 0′. Similarly, the group
structure upon {xi} mod N can be reconstructed effectively and uniformly, in N .
Simply search for an xk such that xixjx

−1
k ∈ N (this is an effective search in the

open name of N) and then declare xixj =N xk in G/N . Note that the procedure
above is uniform in the description of N . Therefore, the 0′-computable list of such
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normal clopen subgroups leads to a 0′-computable inverse system of finite groups
whose inverse limit represents G. �
4.2. Proof of Theorem 1.7(2). It is not hard to see that the upper bound is Σ1

1;
we give details below.

Fact 4.9. The topological group isomorphism problem for compact topological
groups is Σ1

1.

Proof. Let X and Y be special dense subsets in Gi and Gj , respectively. We first
explain why the existence of a surjective topological homomorphism is Σ1

1. We are
asking for a function f : X × ω → Y such that:

(1) for each x ∈ X and n ∈ ω, d(f(x, n), f(x, n+ 1)) < 2−n;
(2) limn f(X,n) is dense in Gj ;
(3) limn f(·, n) � X is uniformly continuous;
(4) limn f(·, n) � X is a group-homomorphism.

By uniform continuity, it is sufficient to define it on a dense set. Thus, if we have
(1) and (3), then we have a unique continuous extension f̄ of limn f(X,n). Since
continuous images of compact sets are compact, and compact subsets of Polish
spaces are closed, surjectivity follows from the continuity of f̄ and (2). Finally, (4)
guarantees that f̄ is a group-homomorphism. To make sure that f is 1-1, we also
ask for a g : Y × ω → X which determines a continuous surjective homomorphism
ḡ from Gj onto Gi, and such that f̄ ◦ ḡ = IdGi

. The latter property is closed,
and, therefore, if it fails, then it must be witnessed by special points in X. In
particular, it is sufficient to check it only for special points. It remains to note that
all mentioned conditions are arithmetical in f ⊕ g. �

It follows from Fact 4.9 and (1) of Theorem 1.7 that the isomorphism problems
for connected and totally disconnected compact Polish groups are both Σ1

1.
We now prove Σ1

1-completeness. Our proof of Theorem 1.4(1) is not uniform.
Nonetheless, it is fully uniform when restricted to torsion-free constructive groups
of rank ω. As we noted in the proof of Theorem 1.4(1), the only obstacle is in the
absence of computable basis. If the rank is infinite, then the proof of Dobrica’s
theorem becomes uniform, as explained in the first part of the proof of Proposi-
tion 3.10. Every torsion abelian group also has a computable basis – it is empty.
Thus, Theorem 1.4(1) is uniform for torsion constructive groups as well. In each

of these two special cases, we have a uniformly effective reduction G → Ĝ such

that G ∼= H iff Ĝ ∼= Ĥ. The isomorphism problems for constructive torsion and
torsion-free abelian groups of rank ω are both Σ1

1-complete ([DM08,GK02]). (In
fact, the groups witnessing Σ1

1-completeness in [DM08] have computable bases, so
we don’t even need Dobrica’s result in this case.) It remains to note that the duals
of discrete torsion abelian groups are profinite, and the duals of discrete torsion-free
abelian groups are connected [Pon66].

5. Profinite abelian groups

Recall Definition 1.2 of a recursive profinite group. A recursive profinite group
can be viewed as the collection of [infinite] paths through a computably branching
tree with no dead ends. In such a presentation, every [infinite] path represents
an element of the group, and the operations are represented by computable op-
erators acting on this topological space (see [LR81, Smi81b]). We can define an
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(ultra)metric on this space, similarly to how it is done for Cantor space. With
respect to this metric, the presentation becomes a computable Polish group. In
this presentation, we can effectively list basic clopen sets. In particular, a map
φ : H1 → H2 between recursive profinite groups H1 and H2 is computable if the
pre-image of any basic clopen set of H2 can be effectively listed as a disjoint union
of basic clopen sets of H2. We will use this property below.

5.1. Proof of Theorem 1.9. Recall that we need to show that a profinite P

is recursively presentable iff its torsion dual P̂ is constructivisable. Consider a
profinite abelian P . We can view P as the inverse limit of a system of finite groups
0 ← A0 ← A1 ← . . . , where all maps are surjective. It is well known (see [Fuc70]

for more detail) that P̂ is the direct limit of the system 0 → A0 → A1 → . . . ,
where the injective embeddings can be effectively reconstructed from the respective
maps in the inverse system for P . (To acquire a better understanding of this, see
Example 2.5 but restrict yourself to finite cyclic groups.) In contrast to the general
case of arbitrary compact Polish abelian groups, the above correspondence between
the direct and the inverse systems is uniformly effective. Note also that injective
maps in the direct system canonically and effectively correspond to surjective maps
in the dual inverse system (see, e.g., Proposition 30 on p. 37 of [Mor77]). This gives
(1) of Theorem 1.9.

We prove (2), i.e., that P is c.c. iff P̂ is c.c. Recall that a homeomorphism

witnessing G ∼= ̂̂
G can be chosen in the canonical way:

g → 〈·, g〉,

where 〈χ, g〉 = χ(g) for any character χ ∈ Ĝ. It follows that the identification
is fully effective if we restrict ourselves to computable profinite and constructive
torsion discrete groups. In particular, we can effectively identify G and its second
dual.

Suppose we have a computably categorical (c.c.) torsion group G. We need to

show that Ĝ is c.c. as a profinite group. Let H1 and H2 be two computable profinite

groups homeomorphic to Ĝ. As noted above, we can uniformly effectively produce
constructive torsion groups U1 and U2 whose duals can be effectively identified with

H1 and H2, respectively. (We effectively identify
̂̂
Hi with Hi; then we set Ui = Ĥi.)

Let φ : U2 → U1 be a computable isomorphism of constructive torsion groups
U1 and U2. It is well known [Mor77] that the map

φ̂(χ) = χ ◦ φ,

where χ ∈ H1 = Û1 and χ ◦ φ ∈ H2 = Û2, is a topological group-isomorphism of
H1 onto H2. We claim that this isomorphism and its inverse are both computable.

Furthermore, we can compute χ(a) (in T) effectively and uniformly in χ ∈ H1 = Û1

[represented as an infinite path] and the index for a ∈ Ui. In fact, we can compute
the rational equal to χ(a), and not merely a sequence converging to χ(a). It follows
that χ(a) is determined by a and a finite initial segment of χ. Since all procedures

described above are effective, we conclude that φ̂(χ) = χ◦f is a computable group-
homeomorphism of H1 onto H2. Since f−1 : U1 → U2 is computable, a symmetric

argument shows that the inverse of φ̂ is computable as well.
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Now suppose U1 and U2 are constructivizations of the discrete G. We effectively
and uniformly pass to recursive profinite H1 and H2 whose duals can be effec-
tively identified with U1 and U2, respectively. Let f : H1 → H2 be a computable

topological group-isomorphism. As before, we define f̂ : U2 → U1 by the rule

f̂(χ) = χ ◦ f . We claim that f̂ is a computable isomorphism. More specifically, we

need to effectively and uniformly find u ∈ U1 such that f̂(χ) = u.
Every element of U2 is a character of H2, and each such character χ can be

uniquely associated with its kernel Kχ which is a compact subgroup of H2. We
claim thatKχ has to be clopen. It is clearly closed. To see why it is open, fix a small
enough neighbourhood O of 0 in T that does not contain any non-trivial subgroup of
T. Then χ−1(O) is an open neighbourhood of e in H2. SinceH2 is profinite, χ

−1(O)
must contain a basic clopen subgroup S; it follows that S ⊆ Ker χ. Since Ker χ is
a topological subgroup of H2 (and thus every two points of it are homeomorphic),
every element of Ker χ is contained in it together with some open neighbourhood.

Thus, the character χ is uniquely described by the T-images of the finitely many
cosets in H2/Kχ. Note that Kχ is itself a finite union of basic clopen sets, and
also that we can cover H2 by finitely many translations of Kχ, without repetition
and intersection. Thus, we can obtain a finite disjoint collection of basic clopen
balls B1, . . . , Bk such that any two elements of [a fixed] Bi are equal modulo Kχ,
and furthermore the finite list χ(B1), . . . , χ(Bi) ∈ T uniquely describes χ among
other characters in U2. Furthermore, if H2 is a recursive profinite group, then we
can compute such a description of any element in U2 in finite time. As we build

U2 = Ĥ2, we can monitor the new elements that enter U2 and list their finite
descriptions. The same argument applies to U1.

We can effectively express both Kχ and its pre-image f−1(Kχ) as a disjoint
union of finitely many basic clopen sets in H2 and H1, respectively. We can also
find the disjoint finite covers of H2 and H1 by translations of Kχ and f−1(Kχ),
respectively. Using the disjoint covering of f−1(Kχ) by basic clopen balls and the
disjoint covering of H1 by f−1(Kχ), we can effectively find finitely many disjoint
basic clopen balls B1, . . . , Bk such that for any σ, τ ∈ Bi we have χ◦f(σ) = χ◦f(τ )
and such that these images completely determine the character χ ◦ f . It remains
to find the unique character u ∈ U1 that has the same description by basic clopen

balls, and set f̂(χ) = u. (Note it follows that f is necessarily effectively open.)

5.2. Two applications of Theorems 1.4 and 1.9. The abelian group W wit-
nessing Theorem 1.4(2) is profinite. Since its dual has no constructivization, Theo-
rem 1.9(1) implies thatW has no recursive presentation, thus proving Corollary 1.6.

Recall that Corollary 1.5 states that there exists a computable Polish abelian
group upon which the Haar measure is not computable. The Haar measure on a
compact group G is the unique left-invariant probability measure on Borel subsets
of G; see, e.g., [Pon66] for a formal definition. Fix some effective listing of basic
open balls in a computable Polish G. We say that X ⊆ ω is a name of an open set
U ⊆ G if U =

⋃
i∈X Bi.

Definition 5.1. We say that a measure μ on G is computable if μ(
⋃

i∈X Bi) is a
real uniformly computable in X.

Proof of Corollary 1.5. We claim that the computable Polish presentation U of the
dual of GS =

⊕
p∈S Zp from the proof of Theorem 1.4(1) has this property. We

explicitly made sure that S was not c.e. Recall that U was built as a c.e closed
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subgroup of
∏

n∈N
Tn so that, for every n, the projection Un of U to Tn was

isomorphic to Zp for some p ∈ S. (We identify the c.e. closed set U with the
computable Polish presentation of U given by Fact 3.1.) We claim that if the Haar
measure μ on U was computable, then S would be c.e. So assume μ is computable.

For a basic open interval I ⊂ Tn, let

I = T0 × T1 × . . .Tn−1 × I × Tn+1 × . . . .

Then I is a basic open set in U . Furthermore, if I has rational end-points, then
I has a computable name. In particular, its Haar measure must be a (uniformly)
computable real. For every n and for every element u of Un there exists a basic
open interval Iu ⊂ Tn containing u such that

μ(Iu) = 1/p

for p ∈ S such that Un
∼= Zp. At a stage s we have disjoint current 2−s-approxima-

tions Iu,s to such intervals, and we also have our current best guess Os on the
order of Un so that 1/Os agrees with μs(Iu,s) up to 2−s. We simply wait until a
late enough s such that In,s is so small that enumerating more elements into Un

would have to reduce μ(Iu,s) at least twice. (We invite the reader to reconstruct
the elementary routine details.) After this stage Os must be stable. This gives an
algorithm for enumerating S, a contradiction. �

6. Further questions

The area of computable topological groups is wide open; we suggest only a few
further directions that seem most relevant to the main results of the paper. As
we noted in the introduction, one can ask many questions related to Theorem 1.4
and, more generally, to the effective content of Pontryagin Duality. For instance,
is there any reasonable (i.e., arithmetical) uniform upper bound on the complexity
of the discrete dual of a computable Polish compact abelian G? (We note that
if G is profinite computable Polish, then its dual is 0′-constructivisable. It seems
that understanding the connected case is the key.) Does part (2) of Theorem 1.4
remain true if W has computable Haar measure? Is (1) of Theorem 1.4 provably
non-uniform? Also, Khoussainov suggested looking at Pontryagin Duality from a
different, “local” perspective. We could fix a computable compact abelian G and

ask questions about the complexity of characters in Ĝ which are isolated points in
Hom(G,T) (under the supremum metric). For example, is there a constructive G
which has no computable non-trivial character?

We leave open whether there is a computable compact Polish group such that
all its computable Polish presentations have no algorithm for Haar measure. We
also suspect that there exists a computable Polish profinite group such that all its
X-recursive presentations have the property X ≥T 0′.
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