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THE UNIFORM MARTIN’S CONJECTURE

FOR MANY-ONE DEGREES

TAKAYUKI KIHARA AND ANTONIO MONTALBÁN

Abstract. We study functions from reals to reals which are uniformly degree
invariant from Turing equivalence to many-one equivalence, and we compare
them “on a cone”. We prove that they are in one-to-one correspondence with
the Wadge degrees, which can be viewed as a refinement of the uniform Mar-
tin’s conjecture for uniformly invariant functions from Turing equivalence to
Turing equivalence.

Our proof works in the general case of many-one degrees on Qω and Wadge
degrees of functions ωω → Q for any better-quasi-ordering Q.

1. Introduction

The uniform version of Martin’s conjecture for functions from Turing equiva-
lence to Turing equivalence was proved by Slaman and Steel in [Ste82, SS88]. We
prove it for functions that are uniformly degree invariant from Turing to many-one
equivalence, getting a finer and richer structure. Let us explain this in more detail.

Often in mathematics, we consider a class of objects, some of which show up more
often than others. It is often the case that those objects that occur naturally behave
better than the rest. The contrast between the general behavior and the behavior
of naturally occurring objects can be quite interesting and intriguing. For instance,
not all continuous functions are differentiable, although most naturally occurring
ones are; not all sets of reals are measurable, although most naturally occurring
ones are. In this paper, we consider the class of many-one degrees, which has been
widely studied in computability theory since its beginnings (see [Odi89, Chapters III
and VI]).

Definition 1. For sets A,B ⊆ N, we say that A is many-one reducible to B
(sometimes referred to as m reducible and written A ≤m B) if there is a computable
function ψ : N → N such that

n ∈ A ⇐⇒ ψ(n) ∈ B for all n’s ∈ N.

As usual, from this preordering we define an equivalence relation ≡m by

A ≡m B ⇐⇒ A ≤m B and B ≤m A,

and we call the equivalence classes m-degrees, which are partially ordered by ≤m.
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This reducibility tries to measure the information content within a set: if A ≤m

B, then B contains all the information encoded in A. It is one of the most natural
reducibilities in computability theory. Let us look at some examples. The following
three sets are m equivalent:

• K, the Halting problem, namely the set of all programs that halt and do
not run forever;

• the word problem, namely the set of pairs of a finite set of generators and
a finite set of relations generating a group that is trivial;

• Hilbert’s 10th problem, namely the set of polynomials in Z[X1, X2, . . .] which
have integer solutions.

This is actually how one proves that the last two sets are noncomputable: one shows
that the Halting problem, which can be easily shown to be noncomputable with a
diagonalization argument, m-reduces to them. Continuing with more examples, if
we consider that the set P = {p(Y,X1, . . . , Xk) ∈ Z[Y,X1, X2, . . .] : p has integer
solutions for exactly one value of Y }, then P is strictly more complicated than the
Halting problem K. That is, K ≤m P but P 	≤m K. Computability theories would
recognize P as the complete d.c.e. m-degree. Then the set T , of finite presentations
of torsion-free groups, is strictly higher up [Lem97], and the set L of computable
linear orderings which do not contain a copy of Q is even higher. (For computability
theorists: these are the complete Π0

2 and complete Π1
1 m-degrees.)

There are various other natural m-degrees that computability theorists know
about. But the natural examples are still few and far between, and except for
taking complements, they seem to be linearly ordered—even well-ordered. For in-
stance, we know of no natural m-degree of a c.e. set that is neither complete nor
computable, despite there being infinitely many such degrees. We know of no nat-
ural m-degree of a Σ1

1 set that is neither Σ1
1 complete nor hyperarithmetic—again,

despite there being lots of them. The general structure of the m-degrees is quite
complex: there are continuum-size antichains; every countable poset embeds in it,
even below K [KP54]; its first-order theory is extremely complicated—it is com-
putably isomorphic to true second-order arithmetic, etc. [NS80] (see [Odi89, Chap-
ter VI].)

In this paper, we give a complete characterization of the natural many-one de-
grees. In the same sense, a characterization of the natural Turing degrees is already
well known and follows from the uniform Martin’s conjecture, which was proved
by Slaman and Steel [Ste82,SS88]: the natural Turing degrees are, essentially, the
iterates of the Turing jump through the transfinite. Becker [Bec88] gave a detailed
analysis of the well order of natural nonzero Turing degrees by relating them to
the universal sets of reasonable point classes. It turns out that the answer for the
many-one degrees is richer: the natural many-one degrees are in one-to-one corre-
spondence with the Wadge degrees. Except for a few ideas that we borrowed from
the proof of the uniform Martin’s conjecture, most of our argument is completely
different. Our results can be viewed as a refinement of the uniform Martin’s con-
jecture, since the jump of a natural Turing degree is a natural m-degree. However,
there are many natural m-degrees that are not differentiated by Turing equiva-
lence. Indeed, every natural Turing degree contains a lot of m-inequivalent natural
m-degrees; for instance, the complete c.e. set is Turing equivalent to the complete
d.c.e. set, though they are not m equivalent.
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We do not have a formal mathematical definition for what it means to be a
natural m-degree. Thus, there will have to be an empirical, nonmathematical claim
in our argument:

Natural m-degrees induce Turing to many-one, uniformly degree-invariant
functions, as in Definition 2.

This claim comes from the observation that, in computability, all proofs relativize,
which is also empirically observed. That is, for any given theorem, if we change
the notion of computability to that of computability relative to an oracle X, the
resulting theorem can then still be proved using the same proof. Furthermore,
the notions we deal with in computability theory also relativize, and so do their
properties. Thus, if we have a natural m-degree s, we can associate with it a
function that, given an oracle X, returns the relativization of s to X, denoted
sX . Furthermore, if we relativize to an oracle Y ≡T X, the classes of partial X-
computable functions and of partial Y -computable functions are the same, so we
should obtain the same m-degrees. We let the interested reader contemplate this
fact further; see also [Ste82,Bec88,DS97] for criteria on natural degrees. We will
now move on to the purely mathematical results.

Here is the definition of the uniformly degree-invariant functions we mentioned
above.

Definition 2. We say that a function f : ωω → 2ω is uniformly (≤T ,≤m)-order
preserving (abbreviated (≤T ,≤m)-UOP) if, for every X,Y ∈ ωω,

X ≤T Y =⇒ f(X) ≤m f(Y ),

and furthermore, there is a computable function u : ω → ω such that, for all cases
in which X,Y ∈ ωω,

X ≤T Y via e =⇒ f(X) ≤m f(Y ) via u(e).

(By X ≤T Y via e, we mean that it is the eth Turing functional Φe that Turing
reduces X to Y , and analogously with m-reducibility.)

We say that f is uniformly (≡T ,≡m) invariant (abbreviated (≡T ,≡m)-UI)
if there is a computable function u : ω2 → ω2 such that, for all cases in which
X,Y ∈ ωω,

X ≡T Y via (i, j) =⇒ f(X) ≡m f(Y ) via u(i, j).

There is a natural notion of largeness for sets of Turing degrees given by Martin’s
measure: a Turing-degree-invariant set A ⊆ ωω has the Martin measure 1 if it
contains a Turing cone, i.e., a set of the form {X ∈ ωω : Y ≥T X} for some X ∈ ωω,
and has the Martin measure 0 otherwise. Martin proved that if determinacy holds
for all sets in a point class Γ, then this is a σ-additive measure on the degree-
invariant sets in Γ [Mar68]. He used this notion of largeness to compare ≡T -to-
≡T –invariant functions: Given two such functions, we say that f is Turing reducible
to g on a cone if f(X) ≤T g(X) for all X’s on a set of Martin’s measure 1.

Martin’s conjecture: The nonconstant ≡T -to-≡T –invariant functions are
well-ordered by Turing reducibility on a cone.

Martin’s conjecture is one of the most important open questions in computability
theory. As we mentioned above, the case of uniformly ≡T -to-≡T –invariant functions
was proved by Slaman and Steel [Ste82,SS88], and what we are reminded of is Steel’s
conjecture that claims that every ≡T -to-≡T –invariant function is Turing equivalent
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on a cone to a uniformly invariant one. Andrew Marks has been making quite a
bit of progress on this.

In this paper, we instead use Martin’s notion of largeness to extend the many-one
ordering from sets to (≡T ,≡m)-UI functions. As it turns out, we obtain a much
richer structure than for the uniformly ≡T -to-≡T –invariant functions, as Turing
equivalence is a much coarser equivalence relation.

Definition 3. For A,B ⊆ ω and an oracle C ∈ ωω, we say that A is many-one
reducible to B relative to C (and write A ≤C

m B) if there is a C-computable function
ΦC

e such that
(∀n ∈ ω) n ∈ A ⇐⇒ ΦC

e (n) ∈ B.

Given f, g : ωω → 2ω, we say that f is many-one reducible to g on a cone (and write
f ≤�

m g) if
(∃C ∈ ωω)(∀X ≥T C) f(X) ≤C

m g(X).

It is clear that ≤�
m is a preordering and hence induces an equivalence on func-

tions we denote by ≡�
m. Our objective is to compare ≡�

m-degrees of (≡T ,≡m)-UI
functions with the Wadge degrees.

Definition 4 (Wadge [Wad83]). Given A,B ⊆ ωω, we say that A is Wadge re-
ducible to B (and write A ≤w B) if there is a continuous function f : ωω → ωω such
that X ∈ A ⇐⇒ f(X) ∈ B for all X’s ∈ ωω.

Again, ≤w is a preordering which induces an equivalence ≡w and a degree
structure. The Wadge degrees are rather well-behaved, at least under enough
determinacy. If we assume Γ-determinacy, then the Wadge degrees of sets in Γ
are semi–well-ordered in the sense that they are well founded and that all an-
tichains have a size of at most 2 (as proved by Wadge [Wad83], and Martin and
Monk [KLS12]). Furthermore, they are all natural, and we can assign names to
each of them using an ordinal and a symbol from {Σ,Π} (see [VW78]), a name
from which we can understand the nature of that Wadge degree.

Here is our main theorem for the case of sets.

Theorem 5 (axiom of determinacy and dependent choice (AD+DC)). There is an
isomorphism between the partial ordering of ≡�

m-degrees of (≡T ,≡m)-UI functions
ordered by ≤�

m and the partial ordering of Wadge degrees of subsets of ωω ordered
by Wadge reducibility.

The definition of the isomorphism is merely an uncurrying function, which is
not complicated (see section 2). It is the proof that it is a correspondence that
requires work. We get the following simple corollaries. The clopen Wadge degrees
correspond to the constant functions. Then the open nonclopen Wadge degree
corresponds to the (≡T ,≡m)-UI function that gives the complete c.e. set. Thus,
there are no (≡T ,≡m)-UI functions strictly in between the constant functions and
the complete ones. The Hausdorf–Kuratowski difference hierarchy of Δ0

2 sets of
reals corresponds to the Ershov hierarchy of Δ0

2 sets of natural numbers. Thus, up to
≡�

m equivalence, the only Δ0
2 (≡T ,≡m)-UI functions are the ones corresponding to

the Ershov hierarchy. The complete Wadge degree of the Σ1
1 set of reals corresponds

to the (≡T ,≡m)-UI function given by the complement of the hyperjump. Since
every Wadge degree of a Σ1

1 set must be either Σ1
1 complete or Borel, we get that,

up to ≡�
m equivalence, a Σ1

1 (≡T ,≡m)-UI function must be either complete or
hyperarithmetic.
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In our construction of section 3, we actually assign a (≤T ,≤m)-UOP function to
each Wadge degree. Thus, our proof also gives the following theorem.

Theorem 6 (AD+DC). Every (≡T ,≡m)-UI function ωω → 2ω is ≡�
m equivalent

to a (≤T ,≤m)-UOP one.

1.1. The extension to better-quasi-orderings. Our main theorem will actually
be more general than Theorem 5. A subset of ω can be viewed as a function ω → 2,
and a subset of ωω as a function ωω → 2. Instead, we will consider functions
ω → Q and ωω → Q, where Q is a better-quasi-ordering (bqo). The definition of
better-quasi-ordering is complicated (Definition 10), so for now, let us just say that
better-quasi-orderings are well founded, have no infinite antichains, and have nice
closure properties.

The generalizations of all of the notions defined above are straightforward. We
include them for completeness.

Definition 7. Let (Q;≤Q) be a quasi-ordered set. For A,B ∈ Qω and an oracle
C ∈ ωω, we say that A isQ-many-one reducible to B relative to C (writtenA ≤C

m B)
if there is a C-computable function ΦC

e : ω → ω such that

(∀n ∈ ω) A(n) ≤Q B(ΦC
e (n)).

For functions ωω → Qω, the definitions of (≤T ,≤m)-UOP, (≤T ,≤m)-UI, and ≤�
m

are then exactly as before, using the new notion of Q-many-one reducibility.
For Q-valued functions A,B : ωω → Q, we say that A is Q-Wadge reducible to

B (written A ≤w B) if there is a continuous function θ : ωω → ωω such that

(∀X ∈ ωω) A(X) ≤Q B(θ(X)).

On the one hand, considering the general case does not add to the complexity
of the proof—the proofs for 2 and for a general Q are essentially the same. There
are bqos Q other than 2 for which the Q-many-one degrees are interesting too. For
Q = 3, the poset with three incomparable elements, Marks [Mar17] proved that
many-one equivalence on 3ω is a uniformly universal countable Borel equivalence
relation, while this is not the case for 2ω. Since (≡T ,≡m)-UI functions are nothing
more than uniform reductions from Turing to many-one equivalence, understanding
such functions can shed light on the structure of countable, degree-invariant Borel
equivalence relations. For Q = (ω;≤), we maintain that, for f, g : ω → ω, f ≤m g
if and only if there is a computable speed up of g that grows faster than f , that is,
if there is a computable h : ω → ω such that g ◦ h(n) ≥ f(n) for all n’s ∈ ω. On
the side of the Wadge degrees, Steel showed that when Q is the class of ordinals,
the Wadge degrees are well founded. In [KM], Kihara and Montalbán provide a
full description of the Wadge degrees of Q-valued Borel functions for each bqo Q,
extending the work of Duparc [Dup01,Dup03], Selivanov [Sel07], and others.

Here is our main theorem.

Theorem 8 (AD+). There is an isomorphism between the partial ordering of ≡�
m-

degrees of (≡T ,≡m)-UI functions ωω → Qω ordered by ≤�
m and the partial ordering

of Q-Wadge degrees of functions ωω → Q ordered by Q-Wadge reducibility.

Theorem 9 (AD+). Every (≡T ,≡m)-UI function ωω → Qω is ≡�
m equivalent to a

(≤T ,≤m)-UOP one.
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1.2. Background facts on Q-Wadge degrees. In the 1970s, Martin and Monk
[KLS12] showed that the Wadge degrees of subsets of ωω are well founded, and hence
semi–well-ordered by Wadge’s lemma [Wad83]. Steel then showed that the Wadge
degrees of ordinal-valued functions with domain ωω are well-ordered (see [Dup03,
Theorem 1]). Later, van Engelen, Miller, and Steel [vEMS87] employed bqo theory
to unify these results, and they showed that if Q is bqo, then so are the Wadge
degrees of Q-valued Borel functions. More recently, Block [Blo14] introduced the
notion of a very strong better-quasi-order to remove the Borel-ness assumption from
van Engelen–Miller–Steel’s theorem. (We show in subsection 1.3 that under AD+,
bqos and very strong bqos are the same thing.)

To define bqos, we need to introduce some notation. Let [ω]ω be the set of
all strictly increasing sequences on ω, whose topology is inherited from ωω. We
also assume that a quasi-order Q is equipped with the discrete topology. Given
X ∈ [ω]ω, by X− we denote the result of dropping the first entry from X (or,
equivalently, X− = X \ {minX} if we think of X ∈ [ω]ω as an infinite subset of ω).

Definition 10 (Nash-Williams [NW65]). A quasi-order Q is called a bqo if, for any
continuous function f : [ω]ω → Q, there is an X ∈ [ω]ω such that f(X) ≤Q f(X−).

The formulation of the definition above is due to Simpson [Sim85]. It is not hard
to prove that every bqo is also a well-quasi-order, that is, that it is well founded
and that it has no infinite antichain.

Example 11. For a natural number k, the discrete order Q = (k; =), which we
will denote by k, is a bqo. More generally, every finite partial ordering is a bqo.
For Q = k, the Q-valued functions are called k-partitions.

Let us now state the key facts that we will be using for the Q-Wadge de-
grees. Special cases of the following facts were proved by van Engelen, Miller,
and Steel [vEMS87, Theorem 3.2] for Borel functions, and by Block [Blo14, Theo-
rem 3.3.10] for very strong bqos Q under AD. AD+ proves the general result.

Fact 12 (AD+). If Q is a bqo, then the Wadge degrees of Q-valued functions on
ωω form a bqo too.

There are two more facts about Q-Wadge degrees that we will use throughout
the paper.

Definition 13. We say that a Q-Wadge degree a is σ-join-reducible if a is the
least upper bound of a countable collection (bi)i∈ω of Q-Wadge degrees such that
bi <w a. Otherwise, we say that a is σ join irreducible.

The following fact gives a better way to characterize σ join reducibility. Its
proof uses the well-foundedness of the Q-Wadge degrees, which is an immediate
consequence of Fact 12. For X ∈ ωω, we use the symbol X �n to denote the unique
initial segment of X of length n, and, for a finite string σ ∈ ω<ω, [σ] denotes the
set of all reals extending σ.

Fact 14 (AD+). Let Q be a bqo. A function A : ωω → Q is σ join irreducible if
and only if there is an X ∈ ωω such that A ≤w A �[X �n] for every n ∈ ω.

A function A : ωω → Q is σ join reducible if and only if it is Wadge equivalent to
a function of the form

⊕
n∈ω An, where each An is σ join irreducible and An <w A,

and where
⊕

n∈ω An is defined by (
⊕

n∈ω An)(n
�X) = An(X).
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The third fact that we need is a generalization of Steel–van Wesep’s theo-
rem [VW78] from Q = 2 to a general Q, proved by Block [Blo14]. The following
generalization of self-duality is due to Louveau and Saint-Raymond [LSR90].

Definition 15. We say that a function A : ωω → Q is self-dual if there is a contin-
uous function θ : ωω → ωω such that A(θ(X)) 	≤Q A(X) for all X’s ∈ ωω.

Assuming AD, Block [Blo14, Proposition 3.5.4] showed the following fact for very
strong bqos. We get it for all bqos under AD+.

Fact 16 (AD+). Let Q be a bqo. Then a Q-valued function on ωω is self-dual if
and only if it is σ join reducible.

1.3. The set-theoretic assumptions. Our main theorems are stated under the
assumption of AD+, which is an extension of the AD introduced byWoodin [Woo99].
If we want to assume less than AD+, our results will still be true for restricted classes
of functions. For instance, they will still be true for Borel functions just in ZFC,
and they will still be true for projective functions if we assume DC+PD.

Let Γ be a point class of sets of reals containing all Borel sets closed under
countable unions, finite intersections, and continuous substitutions. We concentrate
on Γ functions f : ωω → Q whose range is countable, where a function g : ωω → Qω

can also be thought of as a function from ωω × ω (� ωω) to Q in an obvious way
(see also Definition 18).

For our results to hold for functions in Γ, we need to assume, first, that all Wadge-
like games (introduced in section 4) for Γ functions are determined, and, second,
that Facts 12, 14, and 16 hold for functions in Γ. The first assertion is ensured by
assuming that all sets in Γ are determined whenever the ranges of functions are
countable. Our assumption of countability of the range is used only to ensure this
part (and thus this restriction can be removed under AD).

We will now argue that assuming that all sets in Γ are Ramsey gives us these
three facts for any bqo Q. Note that this Γ-Ramsey hypothesis actually implies
that all sets in Γ are completely Ramsey (that is, all sets in Γ have the Baire
property with respect to the Ellentuck topology) under our assumption on Γ (see
Brendle and Löwe [BL99, Lemma 2.1]). Fact 14 uses only the well-foundedness of
Q-Wadge degrees of Γ functions, which clearly follows from Fact 12, on top of ZFC.
For Facts 12 and 16, we need the following observation.

Observation 17. Suppose that all sets in Γ are determined and Ramsey, and let Q
be a bqo. We say that Q is a Γ-bqo if, for every Γ function f : [ω]ω → Q, there is
an X ∈ [ω]ω such that f(X) ≤Q f(X−).

Our assumption on Γ implies that if Q is a bqo, it is also a Γ-bqo: this is
because every such f in Γ has the Baire property with respect to the Ellentuck
topology by our assumption that all sets in Γ are completely Ramsey. Louveau
and Simpson [LS82] showed that, for every Ellentuck–Baire function f : [ω]ω → Y ,
where Y is a metric space, not necessarily separable, there exists an infinite set
X ⊆ ω such that f is continuous when restricted to [X]ω. By applying this to the
discrete metric space Y := Q, the above argument verifies our claim.

One can then carry out the van Engelen–Miller–Steel proof [vEMS87, Theo-
rem 3.2] for Γ functions exactly as Block did in [Blo14, Theorem 3.3.10] to determine
that the Q-Wadge degrees of functions in Γ are bqo. The argument requires only
that Γ is closed under a countable (separated) union and a continuous substitution.
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Similarly, we can use Block’s argument [Blo14, Theorem 3.4.4] to show the Steel–van
Wesep theorem [VW78] for Q-valued Γ functions, that is, that Wadge self-duality
and Lipschitz self-duality are equivalent for Γ functions. Fact 16 then follows from
the standard argument (see [VW78, section 3] or [Blo14, Proposition 3.5.4]) and
Fact 14.

Therefore, what we actually prove in this paper is the following:

If we assume that all sets in Γ are determined and Ramsey, then our main
Theorems 5 and 8 hold when restricted to Γ functions whose range is count-
able.

In particular, Theorems 5, 6, 8, and 9 for Borel functions can be proved in ZFC
(since all Borel sets are determined and Ramsey under ZFC [Mar75,GP73]), and for
projective functions can be proved under PD (since all projective sets are Ramsey
under PD [HK81]; indeed, Δ1

n-determinacy implies that all Π1
n sets are Ramsey for

any positive, even number n). Our assumption AD+ implies that all sets of reals
are determined and Ramsey.

We also notice that our hypothesis that all Γ sets are Ramsey is used only
to ensure that every bqo is Γ-bqo. For Q = 2, we can prove our main theorem
without assuming the Γ-Ramsey hypothesis. This is because the discrete ordered
set 2 = {0, 1} is a very strong bqo (i.e., Γ-bqo for any Γ) within AD+DC (see
Block [Blo14, Corollary 3.3.9]). Indeed, Wadge’s lemma, Martin–Monk’s lemma,
and Steel–van Wesep’s theorem are all provable in AD+DC, and these are all that
we need to prove our main theorem. This is the reason why we can state Theorems 5
and 6 assuming only AD+DC.

We will not mention these assumptions anymore through the rest of the paper.
The reader may either assume AD+ or assume that we are working only with
functions in a point class Γ, all of whose sets are determined and Ramsey.

2. The Plan

The mapping A that we will use to embed the (≡T ,≡m)-UI functions onto the
Q-Wadge degrees is quite simple: it is an uncurrying function. The difficult part
will be to prove that it actually gives a one-to-one correspondence.

Definition 18. Given f : ωω → Qω, we define a function A(f) : ωω → Q as follows:

A(f)(n�X) = f(X)(n)

for n ∈ ω and X ∈ ωω. Here, n�X is the concatenation of n and X.

This function will only work well on a subset of the (≡T ,≡m)-UI functions, the
A-minimal functions, which we define below. Before doing so, we need to introduce
the following notion.

Definition 19. By perfect tree, we mean a map ψT : ω<ω → ω<ω together with its
image ST = {σ : (∃τ ) σ ⊆ ψT (τ )}, satisfying σ ⊆ τ ⇐⇒ ψT (σ) ⊆ ψT (τ ) for all
cases in which σ, τ ∈ ω<ω. In other words, a perfect tree is a pair T = (ψT , ST ).
Abusing notation, we simply write T (·) and T for ψT (·) and ST , respectively. For
each X ∈ ωω, we can define T [X] ∈ ωω in a obvious way; we often think of ψT

directly as a continuous map T [·] : ωω → ωω. We use [T ] to denote the image
{T [X] : X ∈ ωω} of the map T [·], whose element is called a path through T .



THE UNIFORM MARTIN’S CONJECTURE FOR m-DEGREES 9033

A pointed perfect tree is a perfect tree which is computable from each of its
paths. In other words, it is a perfect tree T = (ψT , ST ) such that T ≤T Y for
any Y ∈ [T ], where T ≤T Y means that ψT ⊕ ST ≤T Y . By a uniformly pointed
perfect tree (abbreviated as u.p.p. tree), we mean a perfect tree whose pointedness
is witnessed by a Turing reduction independent of Y . In other words, it is a perfect
tree T = (ψT , ST ) such that there is an index e such that Φe(Y ) = ψT ⊕ST for any
Y ∈ [T ].

The main property of u.p.p. trees is that, for every X ≥T T , we have X ≡T

T [X],1 and we can compute the indices for this Turing equivalence given the index
for X ≥T T . Here is how u.p.p. trees interact with a (≡T ,≡m)-UI function. In the
statement of the lemma, we view the trees as maps ωω → ωω.

Lemma 20. Let f : ωω → Qω be a (≡T ,≡m)-UI function, and let S and T be
u.p.p. trees.

(1) If S ≤T T , then A(f ◦ T ) ≤w A(f ◦ S).
(2) If f is (≤T ,≤m)-UOP, then A(f ◦ T ) ≡w A(f).
(3) f ◦ T ≡�

m f .

Proof. For (1), it is not hard to see that, since S and T are uniformly pointed and
S ≤T T , one can computably extract the triple (S, T,X) from T [X] and the pair
(T,X) from S[T ⊕ X] in a uniform manner. Therefore, there is a pair of Turing
reductions witnessing T [X] ≡T S[T ⊕X] which does not depend on X. Thus, since
f is (≡T ,≡m)-UI, there is a computable function Ψ such that

f(T [X])(n) ≤Q f(S[T ⊕X])(Ψ(n))

for any n ∈ ω. Consequently, we have

A(f◦T )(n�X) = A(f)(n�T [X]) ≤Q A(f)(Ψ(n)�S[T⊕X]) = A(f◦S)(Ψ(n)�T⊕X).

For (2), we need to show only that A(f ◦ T ) ≥w A(f), as the other reduction
follows from (1). There is an index that we can use to compute X from T [X] for
all X’s, and hence there is a computable function ψ witnessing f(X) ≤m f(T [X])
for all X’s. We then have

A(f)(n�X) = f(X)(n) ≤Q f(T [X])(ψ(n)) = A(f ◦ T )(ψ(n)�X).

For (3), assume that X ≥T T . Then X ≡T T [X], so let (i, j) be a pair of
indices witnessing this. Let u = (u0, u1), and witness that f is (≡T ,≡m)-UI, where
ui = πi◦u for the ith projection πi. Then we have f(X)(n) ≤Q f(T [X])(Φu0(i,j)(n))
and f(T [X])(n) ≤Q f(X)(Φu1(j,i)(n)) for any n ∈ ω. This clearly implies that
f ◦ T ≡�

m f . �

Since the Q-Wadge degrees are well founded (actually better-quasi-ordered by
Fact 12), by Lemma 20 (1), we determine that there is a C such that the Q-Wadge
degree of A(f ◦ T ) is the same for all u.p.p. trees T ≥T C.

Definition 21. We say that f : ωω → Qω is A-minimal if for all u.p.p. trees T ,
A(f ◦ T ) ≡w A(f).

1In fact, for any pointed perfect tree T , we always have X ≤T ψT ⊕ ST ⊕ T [X] ≤T T [X] ≤T

ψT ⊕X (the first inequality is proven by searching for σ such that ψT (σ) ⊆ T [X]), and if moreover
X ≥T ψT , then ψT ⊕X ≤T X and hence X ≡T T [X].
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It follows from the lemma above that every (≡T ,≡m)-UI function is
≡�

m equivalent to a A-minimal one, and that if f is (≤T ,≤m)-UOP, it is A minimal
already. We can thus concentrate only on the A-minimal (≡T ,≡m)-UI functions.

Lemma 22. Let f, g : ωω → Qω be (≡T ,≡m)-UI, A-minimal functions. Then
f ≤�

m g implies A(f) ≤w A(g).

Proof. There is a C ∈ ωω such that, for each X ≥T C, there is some e such that ΦC
e

is a many-one reduction witnessing f(X) ≤C
m g(X). We then use Martin’s lemma

(see [MSS16, Lemma 3.5]), saying that if ωω is partitioned into countably many
subsets, then one of them contains all infinite paths through a u.p.p. tree, to obtain
an index e and a u.p.p. tree T such that, for all Y ’s ∈ [T ], f(Y ) ≤C

m g(Y ) via ΦC
e .

We thus get that, for all X’s ∈ ωω and n ∈ ω, f(T [X])(n) ≤Q g(T [X])(ΦC
e (n)),

and hence that A(f ◦ T ) ≤w A(g ◦ T ). Since both f and g are A minimal, this
implies that A(f) ≤w A(g). �

We now have a well-defined map from the ≤�
m-degrees of (≡T ,≡m)-UI functions

to the Q-Wadge degrees: given a (≡T ,≡m)-UI function f , let g be a (≡T ,≡m)-
UI function that is A minimal and ≡�

m equivalent to f , and let the image of the
≡�

m-degree of f be the Q-Wadge degree of A(g). To show that this map is an
isomorphism, i.e., Theorem 8, and to also get Theorem 9, we will show the following
two propositions.

Proposition 23. For every Q-Wadge degree A, there is a (≤T ,≤m)-UOP function
g such that A(g) ≡w A.

Remark 24. Let us say that g is in standard form if either A(g) is non–self-dual
or it is of the form

⊕
gn, where A(gn) is non–self-dual for each n, where we define⊕

n gn : ω
ω → Qω by (

⊕
n gn)(X)(〈m, k〉) = gm(X)(k). It will follow from the

proof of Proposition 23 in the next section that we can assume g is of the form⊕
gn and hence is in standard form. We can then use Lemma 20 to find an oracle

C such that, for all u.p.p. trees S, A(gn ◦ S) has a minimal Wadge degree, and
hence each of the gn’s is A minimal.

Proposition 25. Let f, g : ωω → Qω be (≡T ,≡m)-UI, A-minimal functions. Then
f ≤�

m g if and only if A(f) ≤w A(g).

We will prove Proposition 23 and Remark 24 in section 3. We will prove Propo-
sition 25 in sections 4 and 5.2.

3. Surjectivity

The next step is to show that A is onto. We devote this subsection to proving
Proposition 23.

Given an oracle C ∈ ωω, a function p : ω → ω is said to be C-primitive recursive
if it can be obtained by using the usual axioms of primitive recursive functions,
including the function n �→ C(n) in the list of initial functions. A primitive recur-
sive functional is a function P : ωω → ωω such that P (C) is C-primitive recursive
uniformly in C. Let (PRece)e∈ω be an effective list of all primitive recursive func-
tionals from ωω into ωω, so PRec: (e,X) �→ PRece(X) is computable. We now
introduce the following operation B that will almost work as an inverse of A.



THE UNIFORM MARTIN’S CONJECTURE FOR m-DEGREES 9035

Definition 26. Given A : ωω → Q and C ∈ ωω, let BC(A) : ωω → Qω be defined
by

BC(A)(X)(e) = A(PRece(C ⊕X)).

We will show that, for some large enough C, BC(A) is (≤T ,≤m)-UOP, and that
the ≡�

m-degree of BC(A) is independent of C. We start by showing that BC(A) is
always an inverse of A, even if BC(A) is not (≡T ,≡m)-UI.

Lemma 27. For any A : ωω → Q and C ∈ ωω, we have A(BC(A)) ≡w A.

Proof. Note that A(BC(A))(e�X) = A(PRece(C ⊕X)). Let i be an index of the
function C ⊕X �→ X; that is, X = PReci(C ⊕X). Then, given X, one can easily
see that A(X) = A(PReci(C ⊕X)) = A(BC(A))(i�X). Thus, A ≤w A(BC(A)).
For the other reduction, notice that the map (e,X) �→ PRece(C⊕X) is continuous,
which indicates that A(BC(A)) ≤w A. �

The following lemma shows that, when BC(A) is (≤T ,≤m)-UOP, BC(A) always
gives us the same function up to ≡�

m, independently of the oracle C.

Lemma 28. Let A : ωω → Q, and let C,D ∈ ωω. If BC(A) and BD(A) are
(≤T ,≤m)-UOP, then BC(A) ≡�

m BD(A).

Proof. It suffices to show that, for any X ≥T C ⊕D, BC(A)(X) ≤m BD(A)(X)
holds. Let v be such that PRece(C ⊕ X) = PRecv(e)(D ⊕ C ⊕ X). Note that v
gives us a many-one reduction

B
C(A)(X) ≤m B

D(A)(C ⊕X).

For X ≥T C, since C ⊕X ≤T X and BD(A) is (≤T ,≤m)-UOP, we get

B
D(A)(C ⊕X) ≤m B

D(A)(X).

We thus get BC(A)(X) ≤m BD(A)(X), as needed. The other inequality is analo-
gous. �

What is left to show that is that BC(A) is (≤T ,≤m)-UOP for some C. We
will not get exactly this—but close enough. We start with the case when A is not
self-dual, for which we first need to prove a quick lemma. We say that a function
θ : ωω → ωω is Lipschitz if θ(X) �n depends only on X �n for every X ∈ ωω, n ∈ ω,
or in other words, ifX �n = Y �n =⇒ θ(X) �n = θ(Y ) �n. Note that this property
is stronger than being Lipschitz with respect to the standard ultrametric on ωω.
In the metric context, such a function is called a metric map, or a nonexpansive
map. However, we simply call it a Lipschitz function to make the connection with
a Lipschitz game (see section 4) apparent.

Lemma 29. Let A : ωω → Q be not self-dual, B : ωω → Q, and D ⊆ ωω. If there
is a continuous function θ : D → ωω such that B(X) ≤Q A(θ(X)) for all X’s ∈ D,

then there is a Lipchitz θ̂ : ωω → ωω such that B(X) ≤Q A(θ̂(X)) for all X’s ∈ D.

Proof. Consider the following variation of the Wadge game, which we denote by
Gdiag(A,B �D): Players I and II choose xn, yn ∈ ω alternately and produce X =
(xn)n∈ω and Y = (yn)n∈ω, respectively. Player II wins if Y ∈ D and A(X) 	≥Q
B(Y ). A winning strategy for II would give us a Lipchitz function Ψ such that
A(X) 	≥Q B(Ψ(X)) for all X’s ∈ ωω. Composing with θ, we would then have that
A(X) 	≥Q A(θ◦Ψ(X)), contradicting the belief that A is not self-dual. Thus, Player
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I must have a winning strategy, which gives us a Lipchitz function θ̂ : ωω → ωω. θ̂

must satisfy that, for all X’s ∈ D, A(θ̂(X)) ≥Q B(X), as wanted. �

As in the previous proof, we can always identify a winning strategy τ with
a Lipchitz function θτ . Moreover, n �→ τ (X �n) is (τ ⊕ X)-primitive recursive
uniformly in τ ⊕X. In other words, there is a primitive recursive code e such that,
if τ defines a Lipschitz function θτ , then we have θτ (X) = PRece(τ ⊕X).

Lemma 30. If A : ωω → Q is not self-dual, there exists a C such that BC(A) is
(≤T ,≤m)-UOP.

Proof. We will construct an oracle C ∈ ωω and a computable function q : ω → ω
such that, if X ≤T Y via Φd, then BC(A)(X) ≤m BC(A)(Y ) via q(d). Fix p ∈ Q
and, for each d ∈ ω, consider the following function Bd : ω

ω → Q:

Bd(e, C, Y ) =

{
A(PRece(C ⊕ Φd(Y ))) if Φd(Y ) is total,

p otherwise.

Let Dd be the set of all (e, C, Y )’s such that Φd(Y ) is total. The continuous function
(e, C, Y ) �→ PRece(C ⊕ Φd(Y )) reduces Bd to A on the domain Dd. Therefore, by

the previous lemma, there is a total Lipschitz function θ̂d such that, for all cases,

(e, C, Y ) ∈ Dd, Bd(e, C, Y ) ≤Q A(θ̂d(e, C, Y )). Let

C =
⊕
d∈ω

θ̂d.

We claim that BC is (≤T ,≤m)-UOP. Given d and e, one can effectively find q(d, e)
such that

θ̂d(e, C, Y ) = PRecq(d,e)(C ⊕ Y ) (∀Y ∈ ωω).

Let X ≤T Y and suppose that X = Φd(Y ) for some Turing functional Φd. Since
Φd(Y ) is total, we then have

A(PRece(C ⊕X)) = A(PRece(C ⊕ Φd(Y )))

= Bd(e, C, Y ) ≤Q A(θ̂d(e, C, Y )) = A(PRecq(d,e)(C ⊕ Y )).

Consequently, whenever X ≤T Y via Φd, we have BC(A)(X)(e) ≤Q BC(A)(Y )
(q(d, e)). In other words, BC(A) is (≤T ,≤m)-UOP, as desired. �

We are now ready to show that A is onto.

Proof of Proposition 23. If A is non–self-dual, let C be as in Lemma 30, and then
we have BC(A) being (≤T ,≤m)-UOP and, by Lemma 27, we have A(BC(A)) ≡w

A.
Suppose now that A is self-dual. By Fact 16, A is σ join reducible; that is, there

exists a sequence A0, A1, . . . of non–self-dual functions from ωω to Q such that
A ≡w

⊕
n An. By Lemma 30, for each n, there is a Cn ∈ ωω such that BCn(An)

is (≤T ,≤m)-UOP, and moreover, the proof of Lemma 30 provides an effective way
of computing the witness of the fact that BCn(An) is (≤T ,≤m)-UOP from a given
n. Put C =

⊕
Cn, and then BC(An) is also (≤T ,≤m)-UOP. We claim that

A(
⊕
n

B
C(An)) ≡w A.
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On the one hand, we have that

A(
⊕
n

B
C(An))(〈m, e〉�X) = A(m� PRece(C ⊕X)),

and on the other hand that A(m�X) = A(
⊕

n B
C(An))(〈m, e〉�X), where e is

such that PRece(C ⊕X) = X.
Notice that

⊕
n B

C(An) not only is (≤T ,≤m)-UOP but is also in standard form,
as needed for Remark 24. �

4. The games and the embedding lemma

4.1. The Wadge game Gw. Wadge [Wad83, section 1B] introduced a perfect-
information, infinite, two-player game, known as the Wadge game, which can be
used to define Wadge reducibility. For Q-valued functions A,B : ωω → Q, here is
the Q-valued version GWadge(A,B) of the Wadge game: in the nth round of the
game, Player I chooses xn ∈ ω and II chooses yn ∈ ω ∪ {pass} alternately (where
pass 	∈ ω), and eventually Players I and II produce infinite sequences X = (xn)n∈ω

and Y = (yn)n∈ω, respectively. We write Y p for the result dropping all passes from
Y . We say that Player II wins the game GWadge(A,B) if

Y p is an infinite sequence and A(X) ≤Q B(Y p).

One can play the same game for functions f, g : ωω → Qω by identifying them with
their uncurrying A(f),A(g): given Qω-valued functions f, g, we use the symbol
Gw(f, g) to denote GWadge(A(f),A(g)).

In other words, Player I plays natural numbers m,x0, x1, · · · ∈ ω, and Player II
plays y0, y1, y2, · · · ∈ ω ∪ {pass} alternately. Player II wins the game Gw(f, g) if Y

p

is infinite, and f(X)(m) ≤Q g((Y>i)
p)(yi), where i is the least number such that

yi 	= pass, and Y>i = (yn)n>i. As in Wadge [Wad83, Theorem B8], one can easily
check that A(f) ≤w A(g) holds if and only if Player II wins the game Gw(f, g).

4.2. The m-game Gm. A second version of the Wadge game that will be useful
to us is the game we call Gm(f, g), where Player II is not allowed to pass in his first
move, but he can pass in subsequent moves. In other words, in the game Gm(f, g),
Player I plays natural numbers m,x0, x1, . . ., and Player II plays n, y0, y1, . . . alter-
nately, where n,m, x0, x1, · · · ∈ ω and y0, y1, · · · ∈ ω ∪ {pass}. Player II wins the
game Gm(f, g) if Y p is infinite and f(X)(m) ≤Q g(Y p)(n).

4.3. The Lipchitz-game Glip. A third version of the Wadge game that will also
be useful to us is the game we call Glip(f, g), where Player II is not allowed to
pass at any time. The rest is the same. This game (for sets) was introduced by
Wadge [Wad83, section 1B].

4.4. The modified m-game G̃m. Steel [Ste82, Lemma 1] introduced a perfect-

information, infinite, two-player game G̃m(f, g) to study uniformly Turing degree-
invariant functions. Here is a small variation of its Q-valued version: alternately,
Player I plays natural numbers m,x0, x1, . . ., and Player II plays 〈n, j〉, y0, y1, . . . ,
with 〈n, j〉 ∈ ω2 and y0, y1, · · · ∈ ω ∪ {pass}. Player II wins the game G̃m(f, g) if
Y p is infinite,

ΦY p

j = X, and f(X)(m) ≤Q g(Y p)(n),

where X = (xn)n∈ω and Y = (yn)n∈ω.
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4.5. The plan for embeddability. The following lemmas lay out the plan to
prove the right-to-left direction of Proposition 25, which states that A is an order-
preserving embedding when restricted to A-minimal functions. Recall that the left-
to-right direction of Proposition 25 was already proved in Lemma 22. The lemmas
are quite similar in form, except that one assumes that f is (≤T ,≤m)-UOP, and
the other that g is (≤T ,≤m)-UOP.

Lemma 31. Let f, g : ωω → Qω be (≡T ,≡m)-UI, A-minimal functions. Suppose
also that f is (≤T ,≤m)-UOP. Each of the following statements implies the next
one:

(1) A(f) ≤w A(g).
(2) For every u.p.p. tree S, II wins Gw(f, g ◦ S).
(3) For every u.p.p. tree S, II wins Glip(f, g ◦ S).
(4) II wins G̃m(f, g).
(5) f ≤�

m g.

Lemma 32. Let f, g : ωω → Qω be (≡T ,≡m)-UI, A-minimal functions. Suppose
also that g is (≤T ,≤m)-UOP and in standard form (as in Remark 24). Each of
the following statements implies the next one:

(1) A(f) ≤w A(g).
(2) II wins Gw(f, g).
(3) There is a u.p.p. tree T such that II wins Gm(f ◦ T, g).
(4) f ≤�

m g.

First, let us see how the lemmas imply the right-to-left direction of Proposi-
tion 25.

Proof of Proposition 25. Consider (≡T ,≡m)-UI, A-minimal functions f, g : ωω →
Qω. The problem is that maybe neither of them is (≤T ,≤m)-UOP. By Proposi-
tion 23, there is a (≤T ,≤m)-UOP function h such that A(g) ≡w A(h). Further-
more, as noted in Remark 24, we can assume that h is in standard form. We apply
Lemma 32 to f and h and Lemma 31 to h and g, and we then apply the transitivity
of ≤�

m. �

Let us start by proving the easiest implication in Lemmas 31 and 32. Since f
and g are A minimal, we have A(f) ≤w A(g) if and only if, for every u.p.p. tree
S, A(f) ≤w A(g ◦ S). The equivalences between (1) and (2) in both lemmas then
follow from the equivalence between Q-Wadge reducibility and the Wadge game.

The implication from (4) to (5) follows from the equivalence between ≤�
m re-

ducibility and the modified m-game G̃m (Lemma 35).

5. The proof of the embeddability lemmas

This section is dedicated to proving the rest of Lemmas 31 and 32.

5.1. The case when f is (≤T ,≤m)-UOP. We start with the proof of Lemma 31.
The implication from (2) to (3) in Lemma 31 follows from the next lemma and an
application of determinacy.

Lemma 33. Let f : ωω→Qω be (≤T ,≤m)-UOP, and let g : ωω→Qω be (≡T ,≡m)-
UI. If Player I has a winning strategy for Glip(f, g), then Player I has a winning
strategy for Gw(f, g).
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Proof. Let τ be Player I’s strategy in Glip(f, g). The difficulty in defining a strategy
in Gw(f, g) is that now Player II is allowed to pass.

Let Φi be a computable operator that removes the 0s from the input and reduces
the rest of the entries by 1. That is, Φi(σ

�0) = Φi(σ) and Φi(σ
�(n + 1)) =

Φi(σ)
�n. Since f is (≤T ,≤m)-UOP, there is a computable function p such that

f(Φi(X))(n) ≤Q f(X)(p(n)) for all X’s ∈ ωω.
We are now ready to describe a winning strategy for Player I in the Wadge game

Gw(f, g). Let Y = (ys)s∈ω be a sequence produced by Player II in the Wadge game
Gw(f, g). We will play a run of Glip(f, g) at the same time, where Player II plays
Y p. Let Player I’s first move in Gw(f, g) be x0 = p(n), where n is Player I’s move
in Glip(f, g). At any round s, if Player II’s move ys is pass, then let Player I’s next
move be xs+1 = 0. If Player II’s move is ys 	= pass, then let Player I follow the
winning strategy τ in the game Glip(f, g) and then add 1; that is, let Player I’s
next move be xs+1 = τ (〈y0, . . . , ys〉p) + 1.

Assume that (ys)s∈ω contains infinitely many natural numbers; otherwise, Player
I wins. If Player I follows the above strategy as we described and plays a sequence
p(n)�X, where X = 〈x1, x2, . . .〉, we have Φi(X) = τ (Y p)− and then get

A(f)(p(n)�X) = f(X)(p(n)) ≥Q f(Φi(X))(n) = f(τ (Y p)−)(n) 	≤Q A(g)(Y p).

Consequently, Player I wins the Wadge game Gw(f, g). �

The implication from (3) to (4) in Lemma 31 follows from the next lemma and
an application of determinacy.

Lemma 34. Let f, g : ωω → Qω be (≡T ,≡m)-UI functions. If Player I has a

winning strategy for G̃m(f, g), then Player I has a winning strategy for Glip(f, g◦S)
for some u.p.p. tree S.

Proof. Let τ be Player I’s strategy in G̃m(f, g). The difficulty in defining a strategy
in Glip(f, g ◦ S) is that now Player II does not need to play a correct index e to
compute Player I’s moves.

For each m, e, Z, let n and θ(m, e, Z) be such that (n, θ(m, e, Z)) is Player I’s

answer to II playing (〈m, e〉, Z) in G̃m(f, g). Let S ≥T τ be a u.p.p. tree. Then
there is a computable operator Ψ such that, for every Z ∈ ωω with Z ∈ [S], we have
ΨZ(m, e) = θ(m, e, Z). By the recursion theorem, there is a computable function
e(m) such that ΦZ

e(m) = ΨZ(m, e(m)).

To define Player I’s strategy in Glip(f, g ◦ S) in answer to Player II moving

(m,Y ), all that we have to do is imitate Player I’s strategy in G̃m(f, g) in answer
to Player II moving (〈m, e(m)〉, S[Y ]). Notice that since Player II is not allowed to
pass, Y = Y p, and hence S[Y ] computes Player I’s moves using Φe(m). �

The implication from (4) to (5) follows from the next lemma.

Lemma 35. Let f, g : ωω → Qω be (≡T ,≡m)-UI functions. If Player II has a

winning strategy for G̃m(f, g), then f ≤�
m g.

Proof. Consider a winning strategy σ for Player II in G̃m(f, g). Suppose that the
answer to Player I playing n�X is Player II playing 〈ψ(n), jn〉�Yn,X . Since σ is
winning, we get f(X)(n) ≤Q g(Y p

n,X)(ψ(n)) for all n’s ∈ ω and X’s ∈ ωω. Also, if

we take an X that can compute the strategy, we get, for each n, a pair (in, jn) of
indices for the Turing equivalence between X and Y p

n,X : X computes Y p
n,X using n
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and the strategy, and Y p
n,X computes X using Φjn . Let u = (u0, u1) witness that

g is (≡T ,≡m)-UI. Then u0(in, jn) is a witness of g(Y p
n,X) ≤m g(X) since (in, jn)

witnesses X ≡T Y p
n,X . Thus,

f(X)(n) ≤Q g(Y p
n,X)(ψ(n)) ≤Q g(X)(Φu(in,jn) ◦ ψ(n)).

This implies that f(X) ≤m g(X) whenever X ∈ ωω computes Player II’s strategy.
�

This finishes the proof of Lemma 31.

5.2. The case in which g is (≤T ,≤m)-UOP. We now concentrate on the proof
of Lemma 32. The implication from (3) to (4) follows from the next lemma.

Lemma 36. Let f : ωω → Qω be (≡T ,≡m)-UI, and let g : ωω → Qω be (≤T ,≤m)-
UOP. If there is a u.p.p. tree T such that Player II has a winning strategy for
Gm(f ◦ T, g), then f ≤�

m g.

Proof. The proof is very similar to that of Lemma 35, with the exceptions that now
we do not need to have Y p compute X, and that we need to consider the tree T .

Consider a winning strategy for Player II in Gm(f ◦ T, g). Suppose that the
answer to (n,X) is (m,Y ). From the strategy, we get a function ψ that outputs m
given n and satisfies f(X)(n) ≤Q g(Y )(ψ(n)) for n ∈ ω and X ∈ [T ]. If we take an
X ∈ [T ] that can compute the strategy, then X can compute Y p uniformly using
n. Let i(n) be an index for the Turing reduction from Y p to X. Thus,

f(X)(n) ≤Q g(Y p)(Ψ(n)) ≤Q g(X)(Φu(i(n)) ◦Ψ(n)),

where u witnesses that g is (≤T ,≤m)-UOP, and hence f(X) ≤m g(X) for all
X’s ∈ [T ] that compute the strategy. Now, if we take any X ≥T T , we have
X ≡T T [X], and hence f(X) ≤m f(T [X]) and g(T [X]) ≤m g(X), since f and g are
(≡T ,≡m)-UI. Putting all of this together, we get f(X) ≤m g(X) for all X’s that
compute T and the strategy. This shows that f ≤�

m g. �

All that is left to finish the proof of Lemma 32 is to prove that (2) implies (3),
connecting the Wadge game and the m-game. This will then finish the proofs of
Proposition 25 and our main theorems. The proof is divided into two cases: the
case when A(g) is σ join irreducible, and the case in which A(g) is σ join reducible
and g is in standard form (by Fact 16 and Remark 24). The existence of the u.p.p.
tree T mentioned in (3) is needed only in the latter case.

Lemma 37. Let f, g be functions ωω → Qω, and assume that A(g) is σ join
irreducible. If Player II has a winning strategy for Gw(f, g), then Player II has a
winning strategy for Gm(f, g).

Proof. By Fact 14, if A(g) is σ join irreducible, there is a Z ∈ ωω such that A(g) ≤w

A(g) �[Z �n] for any n ∈ ω. In particular, Player II has a winning strategy τ for
GWadge(A(f),A(g) �[Z(0)]). In the game Gm(f, g), Player II plays Z(0) and then
follows τ . This clearly gives II’s winning strategy for Gm(f, g). �

We now move to the last case of A(g) being σ join reducible. We say that a
closed set P ⊆ 2ω is thin if, for every Π0

1 set Q ⊆ 2ω, the intersection P ∩ Q is
clopen in P . We also say that a closed set P ⊆ 2ω is almost thin if there are at
most finitely many X’s ∈ 2ω such that P ∩ [X �n] is not thin for any n ∈ ω. Recall
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that [σ] denotes the set of all reals extending σ. For a number k ∈ ω, we also use
[k] to denote [〈k〉].

Cenzer et al. [CDJS93, Theorem 2.10] showed that an element X of a thin Π0
1

class satisfies that X ′ ≤T X ⊕ ∅′′. We extend their result as follows.

Lemma 38. Let T ⊆ 2<ω be a tree such that [T ] is almost thin. Then, for every
X ∈ [T ], either X ′ ≤T X ⊕ T ′′ or X ≤T T ′′ holds.

Proof. We first claim that if [T ] is thin, then X ′ ≤T X⊕T ′′ for any X ∈ [T ]. Given
e, let Qe be the Π

0
1 set consisting of oracles X ∈ 2ω such that ΦX

e (e) diverges. Since
[T ] is thin, Qe ∩ [T ] is clopen in [T ]. Therefore, there is a height h(e) such that

ΦX
e (e) converges if and only if Φ

X �h(e)
e (e) converges for every X ∈ [T ]. Note that

such an h can be computed from T ′′ by searching for the smallest h(e) such that,
if σ is an extendible node of T of length h(e) and Φτ

e (e) converges for some node
τ � σ in T , then Φσ

e (e) already converges. This shows that X ′ ≤T X⊕T ′′ for every
X ∈ [T ].

Now, let us assume that T is almost thin. If X ∈ [T ] satisfies the requirement
that [T ] ∩ [X �n] is thin for some n, then we can apply the previous argument to
the closed set [T ]∩ [X �n] and obtain that X ′ ≤T X ⊕T ′′. There are finitely many
X’s for which [T ] ∩ [X �n] is not thin for any n. Again, by restricting ourselves to
a tree of the form [T ] ∩ [X �n], let us assume that X is the only path in [T ] for
which [T ] ∩ [X �n] is not thin for any n. We will show that X ≤T T ′′.

Let Q ⊆ 2<ω be a computable tree witnessing that T is not thin, i.e., such that
[Q] ∩ [T ] is not clopen in [T ]. Let S ⊆ 2<ω be the set of strings σ ∈ T such that
[Q] ∩ [T ] ∩ [σ] is not clopen in [T ] ∩ [σ]. First, let us observe that X is the only
path through S: S must have some path, as otherwise there is some � such that,
for all σ’s ∈ 2�, [Q] ∩ [T ] ∩ [σ] is clopen in [T ] ∩ [σ], and hence [Q] ∩ [T ] would be
clopen in [T ]. Suppose that Y ∈ [T ], but Y 	= X. Then there is some n such that
[T ] ∩ [Y �n] is thin, and hence [Q] ∩ [T ] ∩ [Y �n] is clopen in [T ] ∩ [Y �n]. Thus,
Y �n 	∈ S. It follows that X is the only path through S.

Second, let us observe that S is Π0
1 relative to T ′′. A string σ is not in S if and

only if there exists an � ≥ |σ| such that, for every τ ∈ 2� extending σ, either τ 	∈ Q
(and hence [Q]∩ [T ]∩ [τ ] = ∅) or every γ ∈ T which extends τ and is extendible in
T belongs to Q too (and hence [Q] ∩ [T ] ∩ [τ ] = [T ] ∩ [τ ]).

Since X is the only path on a Π0
1 class relative to T ′′, we find that X ≤T T ′′. �

Lemma 39. Let f : ωω → Qω be a (≡T ,≡m)-UI function, and let g : ωω → Qω be
a (≤T ,≤m)-UOP function such that A(g) is σ join reducible and g is in standard
form. If Player II wins Gw(f, g), then, for some u.p.p. tree T , Player II has a
winning strategy for Gm(f ◦ T, g).

Proof. Since g is in standard form, we have g being of the form
⊕

n∈ω gn, where
A(gn) is σ join irreducible. By Fact 14, there are zn’s ∈ ω such that A(gn) ≤w

A(gn) �[zn] since A(gn) is σ join irreducible.
We say that a subset D of a quasi-order P is directed if for any p, q ∈ D there

is an r ∈ D such that p, q ≤P r. By the Erdös–Tarski theorem [ET43], if P has
no infinite antichains, then P is covered by a finite collection (Dm)m<l of directed
sets. We now consider the quasi-order ≤ω on ω defined by m ≤ω n if and only if
A(gm) ≤w A(gn). Since (ω;≤ω) is bqo, it is covered by finitely many directed sets
(Dm)m<�.
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Given numbers m and n, consider the following closed set:

Fm,n = {X ∈ 2ω : (∀i ∈ Dm)(∀k ∈ ω)[A(f) �[n�X � k] 	≤w A(gi)]}.
Let C ≥T

⊕
m Dm be a sufficiently powerful oracle deciding whether A(f)

�[n�τ ] 	≤w A(gi) given that n, i ∈ ω and τ ∈ 2<ω. In particular, we find that

Fm,n is Π0
1(C).

Case 1. For all n’s ∈ ω, there is an m < � such that Fm,n is almost thin.

In this case, by Lemma 38, every element X ∈ Fm,n satisfies X ′ ≤T X ⊕ C ′′ or
X ≤T C ′′. Thus, no X with X >T C ′′ belongs to Fm,n. Let K be the compact set
{X ⊕ C ′′′ : X ∈ 2ω}. Since K is disjoint from Fm,n, for every X ∈ K, there in an
i ∈ Dm and a k ∈ ω such that A(f) �[n�X � k] ≤w A(gi). By the compactness of
K, such an i can be chosen from a finite set E ⊆ Dm. Since Dm is directed, there
is an i(n) ∈ Dm such that e ≤ω i(n) for any e ∈ E. Let T be a u.p.p. tree whose
image is inside K.

We now claim that Player II has a winning strategy for the game Gm(f ◦T, g). If
Player I’s first move is n, Player II chooses a pair 〈i(n), zi(n)〉. Given Player I’s move

X, Player II waits for a round s such that A(f) �[n�T [X] � s] ≤w A(gi(n)). Such an s

exists by our choice of i(n). By the definition of zi(n), we have A(f) �[n�T [X] � s] ≤w

A(gi(n)) �[zi(n)], and then Player II follows a winning strategy witnessing this. This
procedure gives a desired winning strategy for Player II.

Case 2. Otherwise, there is an n ∈ ω such that Fm,n is not almost thin for any
m < �.

In this case, there is a sequence of different reals (Xm)m<� such that Fm,n ∩
[Xm � k] is not thin for any k. Therefore, there is a sequence (σm)m<� of pairwise
incomparable strings such that Fm,n ∩ [σm] is not thin for any m < �.

For each m < �, let Qm be a computable tree witnessing that Fm,n ∩ [σm] is not
thin. Let (τmk )k∈ω be the set of minimal strings extending σm, not in Qm. Thus,
for each m < �, (τmk )k∈ω is a computable sequence of pairwise incomparable strings
extending σm such that τmk is extendible in Fm,n for infinitely many k’s ∈ ω. Since
τmk is not comparable with τ ij whenever (i, j) 	= (m, k), there is a fixed pair (d, e)

of indices of computable functions witnessing 0�k+m1�X ≡T τmk
�X. Let u show

that f is (≡T ,≡m)-UI, and then we have

f(τmk
�X)(n) ≤Q f(0�k+m1�X)(Φu(d,e)(n)).

We claim that A(f) 	≤w A(g) (i.e., that I wins Gw(f, g)), showing that Case 2
was not possible to begin with. Player I first chooses Φu(d,e)(n). Then Player I
plays along 0ω until Player II moves to some 〈i, y0〉 	= pass at some round s. Let
m be such that i ∈ Dm. Player I searches for a large k so that s ≤ lk + m and
that τmk is extendible in Fm,n. Then, A(f) �[n�τmk ] 	≤w A(gi), since i ∈ Dm, and
therefore Player I has a winning strategy for the game Gw(A(f) �[n�τmk ],A(gi)). In
this game, given Player II’s play Y = (yn)n∈ω, Player I’s winning strategy yields
a play of the form (n, τmk

�θ(Y )). Then I’s play Φu(d,e)(n)
�0�k+m1�θ(Y ) in the

original game clearly gives a winning strategy. �
Remark 40. One might think that the proof is based on the assumption that the
domain of f is 2ω, or at least compact. The trick here is the use of a u.p.p. tree.
Indeed, for any (≡T ,≡m)-UI function f , its restriction f � 2ω already contains full



THE UNIFORM MARTIN’S CONJECTURE FOR m-DEGREES 9043

information of f , since every X ∈ ωω is Turing equivalent to some X∗ ∈ 2ω in a
uniform manner.

We again emphasize that considering the general case does not add to the com-
plexity of the proof. For Q = 2, we can remove the second paragraph (that is, the
use of the Erdös–Tarski theorem) in the proof of Lemma 39 and replace (Dm)m<�

with ({ω}); however, all of the other arguments are still required.
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