American Mathematical Society

My Account · My Cart · Customer Services · FAQ  
AMS eContent Search Results
Matches for: msc=(05A30) AND publication=(all)
Sort order: Date
Format: Standard display

  
Results: 1 to 30 of 63 found      Go to page: 1 2 3

[1] Carla D. Savage and Mirkó Visontai. The $\mathbf{s}$-Eulerian polynomials have only real roots. Trans. Amer. Math. Soc. 367 (2015) 1441-1466.
Abstract, references, and article information   
View Article: PDF

[2] Gyula Károlyi and Zoltán Lóránt Nagy. A simple proof of the Zeilberger--Bressoud $q$-Dyson theorem. Proc. Amer. Math. Soc. 142 (2014) 3007-3011.
Abstract, references, and article information   
View Article: PDF

[3] E. Gorsky. $q,t$-Catalan numbers and knot homology. Contemporary Mathematics 566 (2012) 213-232.
Book volume table of contents   
View Article: PDF

[4] Wenchang Chu and Chenying Wang. Bilateral $q$-Watson and $q$-Whipple sums. Proc. Amer. Math. Soc. 139 (2011) 931-942. MR 2745645.
Abstract, references, and article information   
View Article: PDF

[5] Dominique Foata and Guo-Niu Han. The $q$-tangent and $q$-secant numbers via basic Eulerian polynomials. Proc. Amer. Math. Soc. 138 (2010) 385-393. MR 2557155.
Abstract, references, and article information   
View Article: PDF

[6] Yoshihiro Takeyama. A $q$-analogue of non-strict multiple zeta values and basic hypergeometric series. Proc. Amer. Math. Soc. 137 (2009) 2997-3002. MR 2506458.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[7] Hei-Chi Chan. From a Ramanujan-Selberg continued fraction to a Jacobian identity. Proc. Amer. Math. Soc. 137 (2009) 2849-2856. MR 2506441.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[8] Xia Zhou, Tianxin Cai and David M. Bradley. Signed $q$-analogs of Tornheim's double series. Proc. Amer. Math. Soc. 136 (2008) 2689-2698. MR 2399030.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[9] Pavel Etingof and Igor Pak. An algebraic extension of the MacMahon Master Theorem. Proc. Amer. Math. Soc. 136 (2008) 2279-2288. MR 2390493.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[10] James Haglund. Solutions to exercises. University Lecture Series 41 (2007) 147-162.
Book volume table of contents
View Article: PDF

[11] James Haglund. The proof of the $q, t$-Schr\"oder theorem. University Lecture Series 41 (2007) 113-122.
Book volume table of contents
View Article: PDF

[12] James Haglund. The $q, t$-Catalan numbers. University Lecture Series 41 (2007) 41-57.
Book volume table of contents
View Article: PDF

[13] James Haglund. Introduction to $q$-analogues and symmetric functions. University Lecture Series 41 (2007) 1-25.
Book volume table of contents
View Article: PDF

[14] James Haglund. Macdonald polynomials and the space of diagonal harmonics. University Lecture Series 41 (2007) 27-39.
Book volume table of contents
View Article: PDF

[15] James Haglund. Parking functions and the Hilbert series. University Lecture Series 41 (2007) 77-90.
Book volume table of contents
View Article: PDF

[16] James Haglund. The Loehr-Warrington conjecture. University Lecture Series 41 (2007) 141-146.
Book volume table of contents
View Article: PDF

[17] James Haglund. The $q, t$-Schr\"oder polynomial. University Lecture Series 41 (2007) 59-75.
Book volume table of contents
View Article: PDF

[18] James Haglund. The $q,t$-Catalan Numbers and the Space of Diagonal Harmonics. University Lecture Series 41 (2007) MR MR2371044.
Book volume table of contents   

[19] James Haglund. The shuffle conjecture. University Lecture Series 41 (2007) 91-111.
Book volume table of contents   
View Article: PDF

[20] James Haglund. The combinatorics of Macdonald polynomials. University Lecture Series 41 (2007) 123-140.
Book volume table of contents   
View Article: PDF

[21] Yasuo Ohno and Jun-Ichi Okuda. On the sum formula for the $q$-analogue of non-strict multiple zeta values. Proc. Amer. Math. Soc. 135 (2007) 3029-3037. MR 2322731.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[22] John Shareshian and Michelle L. Wachs. $q$-Eulerian polynomials: Excedance number and major index. Electron. Res. Announc. Amer. Math. Soc. 13 (2007) 33-45. MR 2300004.
Abstract, references, and article information   
View Article: PDF

[23] Nicholas A. Loehr and Gregory S. Warrington. Square $\boldsymbol{q,t}$-lattice paths and $\boldsymbol{\nabla(p_n)}$. Trans. Amer. Math. Soc. 359 (2007) 649-669. MR 2255191.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[24] Dominique Foata and Guo-Niu Han. Signed words and permutations, I: A fundamental transformation. Proc. Amer. Math. Soc. 135 (2007) 31-40. MR 2280171.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[25] Ira M. Gessel and Guoce Xin. A short proof of the Zeilberger-Bressoud $q$-Dyson theorem. Proc. Amer. Math. Soc. 134 (2006) 2179-2187. MR 2213689.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[26] K. Hikami and A. N. Kirillov. Hypergeometric generating function of $L$-function, Slater's identities, and quantum invariant. St. Petersburg Math. J. 17 (2006) 143-156. MR 2140679.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[27] J. Haglund, M. Haiman and N. Loehr. A combinatorial formula for Macdonald polynomials. J. Amer. Math. Soc. 18 (2005) 735-761. MR 2138143.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[28] Wlodzimierz Bryc, Wojciech Matysiak and Pawel\ J. Szablowski. Probabilistic aspects of Al-Salam--Chihara polynomials. Proc. Amer. Math. Soc. 133 (2005) 1127-1134. MR 2117214.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[29] Masato Okado, Anne Schilling and Mark Shimozono. Virtual crystals and fermionic formulas of type $D_{n+1}^{(2)}$, $A_{2n}^{(2)}$, and $C_n^{(1)}$. Represent. Theory 7 (2003) 101-163. MR 1973369.
Abstract, references, and article information   
View Article: PDF

[30] Douglas Bowman. $q$-difference operators, orthogonal polynomials, and symmetric expansions. Memoirs of the AMS 159 (2002) MR 1921582.
Book volume table of contents


Results: 1 to 30 of 63 found      Go to page: 1 2 3


Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia