American Mathematical Society

My Account · My Cart · Customer Services · FAQ  
AMS eContent Search Results
Matches for: msc=(11A51) AND publication=(all)
Sort order: Date
Format: Standard display

  
Results: 1 to 30 of 80 found      Go to page: 1 2 3

[1] William Banks, Carrie Finch, Florian Luca, Carl Pomerance and Pantelimon Stănică. Sierpi\'nski and Carmichael numbers. Trans. Amer. Math. Soc. 367 (2015) 355-376.
Abstract, references, and article information   
View Article: PDF

[2] José María Grau, Antonio M. Oller-Marcén and Daniel Sadornil. A primality test for $Kp^n+1$ numbers. Math. Comp. 84 (2015) 505-512.
Abstract, references, and article information   
View Article: PDF

[3] Yupeng Jiang and Yingpu Deng. Strong pseudoprimes to the first eight prime bases. Math. Comp. 83 (2014) 2915-2924.
Abstract, references, and article information   
View Article: PDF

[4] Cherng-tiao Perng. A quaternionic proof of the representation formulas of two quaternary quadratic forms. Contemporary Mathematics 627 (2014) 157-174.
Book volume table of contents   
View Article: PDF

[5] Lasse Rempe-Gillen and Rebecca Waldecker. Solutions and comments to important exercises. The Student Mathematical Library 70 (2013) 207-232.
Book volume table of contents   
View Article: PDF

[6] Lasse Rempe-Gillen and Rebecca Waldecker. The theorem for Agrawal, Kayal, and Saxena. The Student Mathematical Library 70 (2013) 169-182.
Book volume table of contents   
View Article: PDF

[7] Lasse Rempe-Gillen and Rebecca Waldecker. Algorithms and complexity. The Student Mathematical Library 70 (2013) 43-81.
Book volume table of contents   
View Article: PDF

[8] Lasse Rempe-Gillen and Rebecca Waldecker. Introduction. The Student Mathematical Library 70 (2013) 1-10.
Book volume table of contents   
View Article: PDF

[9] Lasse Rempe-Gillen and Rebecca Waldecker. Natural numbers and primes. The Student Mathematical Library 70 (2013) 13-42.
Book volume table of contents   
View Article: PDF

[10] Lasse Rempe-Gillen and Rebecca Waldecker. Primality Testing for Beginners. The Student Mathematical Library 70 (2013) MR MR3154407.
Book volume table of contents   

[11] Lasse Rempe-Gillen and Rebecca Waldecker. Prime numbers and cryptography. The Student Mathematical Library 70 (2013) 129-150.
Book volume table of contents   
View Article: PDF

[12] Lasse Rempe-Gillen and Rebecca Waldecker. Open questions. The Student Mathematical Library 70 (2013) 193-205.
Book volume table of contents   
View Article: PDF

[13] Lasse Rempe-Gillen and Rebecca Waldecker. Foundations of number theory. The Student Mathematical Library 70 (2013) 83-127.
Book volume table of contents   
View Article: PDF

[14] Lasse Rempe-Gillen and Rebecca Waldecker. The starting point: Fermat for polynomials. The Student Mathematical Library 70 (2013) 153-167.
Book volume table of contents   
View Article: PDF

[15] Lasse Rempe-Gillen and Rebecca Waldecker. The algorithm. The Student Mathematical Library 70 (2013) 183-192.
Book volume table of contents   
View Article: PDF

[16] Pascal Ochem and Michaël Rao. On the number of prime factors of an odd perfect number. Math. Comp. 83 (2014) 2435-2439.
Abstract, references, and article information   
View Article: PDF

[17] Pascal Ochem and Michaël Rao. Odd perfect numbers are greater than $10^{1500}$. Math. Comp. 81 (2012) 1869-1877.
Abstract, references, and article information   
View Article: PDF

[18] S. Adam Fletcher, Pace P. Nielsen and Pascal Ochem. Sieve methods for odd perfect numbers. Math. Comp. 81 (2012) 1753-1776.
Abstract, references, and article information   
View Article: PDF

[19] Scott Contini, Ernie Croot and Igor E. Shparlinski. Complexity of inverting the Euler function. Math. Comp. 75 (2006) 983-996. MR 2197003.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[20] Zhenxiang Zhang. Notes on some new kinds of pseudoprimes. Math. Comp. 75 (2006) 451-460. MR 2176408.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[21] Jerzy Browkin. Erratum to ``Some new kinds of pseudoprimes''. Math. Comp. 74 (2005) 1573-1573. MR 2099412.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[22] Zhenxiang Zhang. Finding $C_3$-strong pseudoprimes. Math. Comp. 74 (2005) 1009-1024. MR 2114662.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[23] Andrew Granville. It is easy to determine whether a given integer is prime. Bull. Amer. Math. Soc. 42 (2005) 3-38. MR 2115065.
Abstract, references, and article information   
View Article: PDF

[24] Jerzy Browkin. Some new kinds of pseudoprimes. Math. Comp. 73 (2004) 1031-1037. MR 2031424.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[25] Pedro Berrizbeitia and T. G. Berry. Biquadratic reciprocity and a Lucasian primality test. Math. Comp. 73 (2004) 1559-1564. MR 2047101.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[26] Zhenxiang Zhang and Min Tang. Finding strong pseudoprimes to several bases. II. Math. Comp. 72 (2003) 2085-2097. MR 1986825.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[27] Richard E. Crandall, Ernst W. Mayer and Jason S. Papadopoulos. The twenty-fourth Fermat number is composite. Math. Comp. 72 (2003) 1555-1572. MR 1972753.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[28] Zhenxiang Zhang. A one-parameter quadratic-base version of the Baillie-PSW probable prime test. Math. Comp. 71 (2002) 1699-1734. MR 1933051.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[29] Colin Percival. Rapid multiplication modulo the sum and difference of highly composite numbers. Math. Comp. 72 (2003) 387-395. MR 1933827.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[30] Pedro Berrizbeitia and Boris Iskra. Deterministic primality test for numbers of the form $A^2.3^n+1$, $n \ge 3$ odd. Proc. Amer. Math. Soc. 130 (2002) 363-365. MR 1862113.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge


Results: 1 to 30 of 80 found      Go to page: 1 2 3