American Mathematical Society

My Account · My Cart · Customer Services · FAQ  
AMS eContent Search Results
Matches for: msc=(11F30) AND publication=(mcom)
Sort order: Date
Format: Standard display

  
Results: 1 to 10 of 10 found      Go to page: 1

[1] Peter Bruin and Andrea Ferraguti. On $L$-functions of quadratic $\mathbb{Q}$-curves. Math. Comp.
Abstract, references, and article information   
View Article: PDF

[2] Oliver D. King, Cris Poor, Jerry Shurman and David S. Yuen. Using Katsurada's determination of the Eisenstein series to compute Siegel eigenforms. Math. Comp.
Abstract, references, and article information   
View Article: PDF

[3] Martin Raum. Computing genus $1$ Jacobi forms. Math. Comp. 85 (2016) 931-960.
Abstract, references, and article information   
View Article: PDF

[4] Jinxiang Zeng and Linsheng Yin. On the computation of coefficients of modular forms: The reduction modulo $p$ approach. Math. Comp. 84 (2015) 1469-1488.
Abstract, references, and article information   
View Article: PDF

[5] D. W. Farmer and S. Lemurell. Deformations of Maass forms. Math. Comp. 74 (2005) 1967-1982. MR 2164106.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[6] Holger Then. Maaß cusp forms for large eigenvalues. Math. Comp. 74 (2005) 363-381. MR 2085897.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[7] K. Chakraborty, A. K. Lal and B. Ramakrishnan. Modular forms which behave like theta series. Math. Comp. 66 (1997) 1169-1183. MR 1423070.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[8] J. E. Cremona. Computing the degree of the modular parametrization of a modular elliptic curve . Math. Comp. 64 (1995) 1235-1250. MR 1297466.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[9] D. A. Hejhal and S. Arno. On Fourier coefficients of Maass waveforms for $\mathrm{PSL}(2, \textbf{Z})$ . Math. Comp. 61 (1993) 245--267, S11--S16. MR 1199991.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[10] Marvin I. Knopp. On the cuspidal spectrum of the arithmetic Hecke groups . Math. Comp. 61 (1993) 269-275. MR 1189519.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge


Results: 1 to 10 of 10 found      Go to page: 1


Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia