American Mathematical Society

My Account · My Cart · Customer Services · FAQ  
AMS eContent Search Results
Matches for: msc=(11Y11) AND publication=(all)
Sort order: Date
Format: Standard display

  
Results: 1 to 30 of 106 found      Go to page: 1 2 3 4

[1] Alexander Abatzoglou, Alice Silverberg, Andrew V. Sutherland and Angela Wong. A framework for deterministic primality proving using elliptic curves with complex multiplication. Math. Comp.
Abstract, references, and article information   
View Article: PDF

[2] Eric Bach and Andrew Shallue. Counting composites with two strong liars. Math. Comp. 84 (2015) 3069-3089.
Abstract, references, and article information   
View Article: PDF

[3] Yannick Saouter, Timothy Trudgian and Patrick Demichel. A still sharper region where $\pi(x)-{\mathrm{li}}(x)$ is positive. Math. Comp. 84 (2015) 2433-2446.
Abstract, references, and article information   
View Article: PDF

[4] José María Grau, Antonio M. Oller-Marcén and Daniel Sadornil. A primality test for $Kp^n+1$ numbers. Math. Comp. 84 (2015) 505-512.
Abstract, references, and article information   
View Article: PDF

[5] Yupeng Jiang and Yingpu Deng. Strong pseudoprimes to the first eight prime bases. Math. Comp. 83 (2014) 2915-2924.
Abstract, references, and article information   
View Article: PDF

[6] Zhenxiang Zhang. Estimating the counts of Carmichael and Williams numbers with small multiple seeds. Math. Comp. 84 (2015) 309-337.
Abstract, references, and article information   
View Article: PDF

[7] Lasse Rempe-Gillen and Rebecca Waldecker. Solutions and comments to important exercises. The Student Mathematical Library 70 (2013) 207-232.
Book volume table of contents
View Article: PDF

[8] Lasse Rempe-Gillen and Rebecca Waldecker. The theorem for Agrawal, Kayal, and Saxena. The Student Mathematical Library 70 (2013) 169-182.
Book volume table of contents
View Article: PDF

[9] Lasse Rempe-Gillen and Rebecca Waldecker. Algorithms and complexity. The Student Mathematical Library 70 (2013) 43-81.
Book volume table of contents
View Article: PDF

[10] Lasse Rempe-Gillen and Rebecca Waldecker. Introduction. The Student Mathematical Library 70 (2013) 1-10.
Book volume table of contents
View Article: PDF

[11] Lasse Rempe-Gillen and Rebecca Waldecker. Natural numbers and primes. The Student Mathematical Library 70 (2013) 13-42.
Book volume table of contents
View Article: PDF

[12] Lasse Rempe-Gillen and Rebecca Waldecker. Primality Testing for Beginners. The Student Mathematical Library 70 (2013) MR MR3154407.
Book volume table of contents

[13] Lasse Rempe-Gillen and Rebecca Waldecker. Prime numbers and cryptography. The Student Mathematical Library 70 (2013) 129-150.
Book volume table of contents
View Article: PDF

[14] Lasse Rempe-Gillen and Rebecca Waldecker. Open questions. The Student Mathematical Library 70 (2013) 193-205.
Book volume table of contents
View Article: PDF

[15] Lasse Rempe-Gillen and Rebecca Waldecker. Foundations of number theory. The Student Mathematical Library 70 (2013) 83-127.
Book volume table of contents
View Article: PDF

[16] Lasse Rempe-Gillen and Rebecca Waldecker. The starting point: Fermat for polynomials. The Student Mathematical Library 70 (2013) 153-167.
Book volume table of contents
View Article: PDF

[17] Lasse Rempe-Gillen and Rebecca Waldecker. The algorithm. The Student Mathematical Library 70 (2013) 183-192.
Book volume table of contents
View Article: PDF

[18] Samuel S. Wagstaff Jr.. Theoretical and practical factoring. The Student Mathematical Library 68 (2013) 239-268.
Book volume table of contents
View Article: PDF

[19] Samuel S. Wagstaff Jr.. The Joy of Factoring. The Student Mathematical Library 68 (2013) MR MR3135977.
Book volume table of contents   

[20] Samuel S. Wagstaff Jr.. Ellliptic curves. The Student Mathematical Library 68 (2013) 173-190.
Book volume table of contents   
View Article: PDF

[21] Samuel S. Wagstaff Jr.. Appendix. Answers and hints for exercises. The Student Mathematical Library 68 (2013) 269-272.
Book volume table of contents   
View Article: PDF

[22] Samuel S. Wagstaff Jr.. Number theory relevant to factoring. The Student Mathematical Library 68 (2013) 41-73.
Book volume table of contents   
View Article: PDF

[23] Samuel S. Wagstaff Jr.. Why factor integers?. The Student Mathematical Library 68 (2013) 1-12.
Book volume table of contents   
View Article: PDF

[24] Samuel S. Wagstaff Jr.. Number theory review. The Student Mathematical Library 68 (2013) 13-39.
Book volume table of contents   
View Article: PDF

[25] Samuel S. Wagstaff Jr.. Simple factoring algorithms. The Student Mathematical Library 68 (2013) 119-142.
Book volume table of contents   
View Article: PDF

[26] Samuel S. Wagstaff Jr.. Factoring devices. The Student Mathematical Library 68 (2013) 219-237.
Book volume table of contents   
View Article: PDF

[27] Samuel S. Wagstaff Jr.. How are factors used?. The Student Mathematical Library 68 (2013) 75-118.
Book volume table of contents   
View Article: PDF

[28] Samuel S. Wagstaff Jr.. Continued fractions. The Student Mathematical Library 68 (2013) 143-171.
Book volume table of contents   
View Article: PDF

[29] Samuel S. Wagstaff Jr.. Sieve algorithms. The Student Mathematical Library 68 (2013) 191-218.
Book volume table of contents   
View Article: PDF

[30] Yannick Saouter and Herman te Riele. Improved results on the Mertens conjecture. Math. Comp. 83 (2014) 421-433.
Abstract, references, and article information   
View Article: PDF


Results: 1 to 30 of 106 found      Go to page: 1 2 3 4


Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia