American Mathematical Society

My Account · My Cart · Customer Services · FAQ  
AMS eContent Search Results
Matches for: msc=(34K20) AND publication=(all)
Sort order: Date
Format: Standard display

  
Results: 1 to 30 of 69 found      Go to page: 1 2 3

[1] Ivanka M. Stamova. On the Lyapunov theory for functional differential equations of fractional order. Proc. Amer. Math. Soc. 144 (2016) 1581-1593.
Abstract, references, and article information   
View Article: PDF

[2] Monica-Dana Burlică and Daniela Roşu. A class of nonlinear delay evolution equations with nonlocal initial conditions. Proc. Amer. Math. Soc. 142 (2014) 2445-2458.
Abstract, references, and article information   
View Article: PDF

[3] Ivanka M. Stamova and Gani Tr. Stamov. On the stability of sets for delayed Kolmogorov-type systems. Proc. Amer. Math. Soc. 142 (2014) 591-601.
Abstract, references, and article information   
View Article: PDF

[4] Pham Huu Anh Ngoc. Novel criteria for exponential stability of functional differential equations. Proc. Amer. Math. Soc. 141 (2013) 3083-3091.
Abstract, references, and article information   
View Article: PDF

[5] Leonid Berezansky and Elena Braverman. On some constants for oscillation and stability of delay equations. Proc. Amer. Math. Soc. 139 (2011) 4017-4026. MR 2823047.
Abstract, references, and article information   
View Article: PDF

[6] Hideaki Matsunaga. Delay-dependent and delay-independent stability criteria for a delay differential system. Proc. Amer. Math. Soc. 136 (2008) 4305-4312. MR 2431044.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[7] John A. D. Appleby, Xuerong Mao and Markus Riedle. Geometric Brownian motion with delay: mean square characterisation. Proc. Amer. Math. Soc. 137 (2009) 339-348. MR 2439458.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[8] Shangjiang Guo and Jeroen S. W. Lamb. Equivariant Hopf bifurcation for neutral functional differential equations. Proc. Amer. Math. Soc. 136 (2008) 2031-2041. MR 2383509.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[9] Chuhua Jin and Jiaowan Luo. Fixed points and stability in neutral differential equations with variable delays. Proc. Amer. Math. Soc. 136 (2008) 909-918. MR 2361863.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[10] Tatjana Eisner and Hans Zwart. Continuous-time Kreiss resolvent condition on infinite-dimensional spaces. Math. Comp. 75 (2006) 1971-1985. MR 2240644.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[11] Xianhua Tang and Xingfu Zou. On positive periodic solutions of Lotka-Volterra competition systems with deviating arguments. Proc. Amer. Math. Soc. 134 (2006) 2967-2974. MR 2231621.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[12] Eduardo Liz, Manuel Pinto, Victor Tkachenko and Sergei Trofimchuk. A global stability criterion for a family of delayed population models. Quart. Appl. Math. 63 (2005) 56-70. MR 2126569.
Abstract, references, and article information
View Article: PDF

[13] T. A. Burton. Fixed points and stability of a nonconvolution equation. Proc. Amer. Math. Soc. 132 (2004) 3679-3687. MR 2084091.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[14] Teresa Faria. An asymptotic stability result for scalar delayed population models. Proc. Amer. Math. Soc. 132 (2004) 1163-1169. MR 2045433.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[15] László Hatvani. On the asymptotic stability for nonautonomous functional differential equations by Lyapunov functionals. Trans. Amer. Math. Soc. 354 (2002) 3555-3571. MR 1911511.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[16] Yongkun Li and Yang Kuang. Periodic solutions in periodic state-dependent delay equations and population models. Proc. Amer. Math. Soc. 130 (2002) 1345-1353. MR 1879956.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[17] Josef Hofbauer and Joseph W.-H. So. Diagonal dominance and harmless off-diagonal delays. Proc. Amer. Math. Soc. 128 (2000) 2675-2682. MR 1707519.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[18] A. O. Ignatyev. On the asymptotic stability in functional differential equations . Proc. Amer. Math. Soc. 127 (1999) 1753-1760. MR 1636954.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[19] Li Yongkun. Periodic solutions of a periodic delay predator-prey system. Proc. Amer. Math. Soc. 127 (1999) 1331-1335. MR 1646198.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[20] Jianhong Wu. Symmetric functional differential equations and neural networks with memory. Trans. Amer. Math. Soc. 350 (1998) 4799-4838. MR 1451617.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[21] Tibor Krisztin, Hans-Otto Walther and Jianhong Wu. Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback. Fields Institute Monographs 11 (1998) MR MR1719128.
Book volume table of contents

[22] $H \cap \overline W$ is smooth near $p_0$. Fields Institute Monographs 11 (1998) 95-111.
Book volume table of contents
View Article: PDF

[23] Smoothness of $W \cap S$ in case $\mathcal O$ is not hyperbolic. Fields Institute Monographs 11 (1998) 63-66.
Book volume table of contents
View Article: PDF

[24] bd$W$ contains the unstable set of the periodic orbit $\mathcal O$. Fields Institute Monographs 11 (1998) 75-93.
Book volume table of contents
View Article: PDF

[25] Dynamics on $\overline W$ and disk representation of $\overline W \cap S$. Fields Institute Monographs 11 (1998) 41-49.
Book volume table of contents
View Article: PDF

[26] The unstable set of $\mathcal O$ contains the nonstationary points of bd$W$. Fields Institute Monographs 11 (1998) 67-73.
Book volume table of contents
View Article: PDF

[27] The separatrix. Fields Institute Monographs 11 (1998) 15-18.
Book volume table of contents
View Article: PDF

[28] Introduction. Fields Institute Monographs 11 (1998) 1-7.
Book volume table of contents
View Article: PDF

[29] Equivalent norms, invariant manifolds, Poincar\'e maps and asymptotic phases. Fields Institute Monographs 11 (1998) 167-172.
Book volume table of contents
View Article: PDF

[30] The delay differential equation and the hypotheses. Fields Institute Monographs 11 (1998) 9-13.
Book volume table of contents
View Article: PDF


Results: 1 to 30 of 69 found      Go to page: 1 2 3


Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia