American Mathematical Society

My Account · My Cart · Customer Services · FAQ  
AMS eContent Search Results
Matches for: msc=(35J92) AND publication=(all)
Sort order: Date
Format: Standard display

  
Results: 1 to 30 of 32 found      Go to page: 1 2

[1] Nikolaos S. Papageorgiou and Vicenţiu D. Rădulescu. Positive solutions of nonlinear Robin eigenvalue problems. Proc. Amer. Math. Soc.
Abstract, references, and article information   
View Article: PDF

[2] Ángel Arroyo and José G. Llorente. On the asymptotic mean value property for planar $p$-harmonic functions. Proc. Amer. Math. Soc. 144 (2016) 3859-3868.
Abstract, references, and article information   
View Article: PDF

[3] Francesca Crispo and Paolo Maremonti. A high regularity result of solutions to a modified $p$-Navier-Stokes system. Contemporary Mathematics 666 (2016) 151-162.
Book volume table of contents   
View Article: PDF

[4] Vladimir G. Tkachev. On the non-vanishing property for real analytic solutions of the $p$-Laplace equation. Proc. Amer. Math. Soc. 144 (2016) 2375-2382.
Abstract, references, and article information   
View Article: PDF

[5] T. V. Anoop, P. Drábek and Sarath Sasi. On the structure of the second eigenfunctions of the $p$-Laplacian on a ball. Proc. Amer. Math. Soc. 144 (2016) 2503-2512.
Abstract, references, and article information   
View Article: PDF

[6] Tommi Brander. Calder\'on problem for the $p$-Laplacian: First order derivative of conductivity on the boundary. Proc. Amer. Math. Soc. 144 (2016) 177-189.
Abstract, references, and article information   
View Article: PDF

[7] Peter Lindqvist and Juan Manfredi. On the mean value property for the $p$-Laplace equation in the plane. Proc. Amer. Math. Soc. 144 (2016) 143-149.
Abstract, references, and article information   
View Article: PDF

[8] David E. Edmunds and Jan Lang. Generalizing trigonometric functions from different points of view. Contemporary Mathematics 645 (2015) 69-81.
Book volume table of contents   
View Article: PDF

[9] Jaime Ripoll and Miriam Telichevesky. Regularity at infinity of Hadamard manifolds with respect to some elliptic operators and applications to asymptotic Dirichlet problems. Trans. Amer. Math. Soc. 367 (2015) 1523-1541.
Abstract, references, and article information   
View Article: PDF

[10] Sergiu Aizicovici, Nikolaos S. Papageorgiou and Vasile Staicu. Nodal solutions for $(p,2)$-equations. Trans. Amer. Math. Soc. 367 (2015) 7343-7372.
Abstract, references, and article information   
View Article: PDF

[11] Lingju Kong. Eigenvalues for a fourth order elliptic problem. Proc. Amer. Math. Soc. 143 (2015) 249-258.
Abstract, references, and article information   
View Article: PDF

[12] Dimitri Mugnai and Nikolaos S. Papageorgiou. Wang's multiplicity result for superlinear $(p,q)$--equations without the Ambrosetti--Rabinowitz condition. Trans. Amer. Math. Soc. 366 (2014) 4919-4937.
Abstract, references, and article information   
View Article: PDF

[13] Francesca Faraci, Antonio Iannizzotto and Csaba Varga. Multiplicity results for constrained Neumann problems. Contemporary Mathematics 595 (2013) 219-229.
Book volume table of contents   
View Article: PDF

[14] Maria-Magdalena Boureanu, Benedetta Noris and Susanna Terracini. Sub and supersolutions, invariant cones and multiplicity results for $p$-Laplace equations. Contemporary Mathematics 595 (2013) 91-119.
Book volume table of contents   
View Article: PDF

[15] I. Shestakov. On the Zaremba Problem for the $p$-Laplace Operator. Contemporary Mathematics 591 (2013) 259-271.
Book volume table of contents
View Article: PDF

[16] Petr Honzík and Benjamin J. Jaye. On the good-$\lambda$ inequality for nonlinear potentials. Proc. Amer. Math. Soc. 140 (2012) 4167-4180.
Abstract, references, and article information   
View Article: PDF

[17] Tiziana Giorgi and Robert Smits. Mean value property for $p$-harmonic functions. Proc. Amer. Math. Soc. 140 (2012) 2453-2463.
Abstract, references, and article information   
View Article: PDF

[18] S. B. Kolonitskiĭ. Multiplicity of solutions of the Dirichlet problem for an equation with the $p$-Laplacian in a three-dimensional spherical layer. St. Petersburg Math. J. 22 (2011) 485-495. MR 2729947.
Abstract, references, and article information   
View Article: PDF

[19] Alberto Farina and Enrico Valdinoci. $1$D symmetry for solutions of semilinear and quasilinear elliptic equations. Trans. Amer. Math. Soc. 363 (2011) 579-609. MR 2728579.
Abstract, references, and article information   
View Article: PDF

[20] Kanishka Perera, Ravi P. Agarwal and Donal O’Regan. Indefinite eigenvalue problems. Math. Surveys Monogr. 161 (2010) 109-115.
Book volume table of contents   
View Article: PDF

[21] Kanishka Perera, Ravi P. Agarwal and Donal O’Regan. Morse Theoretic Aspects of $p$-Laplacian Type Operators. Math. Surveys Monogr. 161 (2010) MR MR2640827.
Book volume table of contents   

[22] Kanishka Perera, Ravi P. Agarwal and Donal O’Regan. Monotonicity and uniqueness. Math. Surveys Monogr. 161 (2010) 87-88.
Book volume table of contents   
View Article: PDF

[23] Kanishka Perera, Ravi P. Agarwal and Donal O’Regan. Anisotropic systems. Math. Surveys Monogr. 161 (2010) 117-133.
Book volume table of contents   
View Article: PDF

[24] Kanishka Perera, Ravi P. Agarwal and Donal O’Regan. Background material. Math. Surveys Monogr. 161 (2010) 27-43.
Book volume table of contents   
View Article: PDF

[25] Kanishka Perera, Ravi P. Agarwal and Donal O’Regan. Morse theory and variational problems. Math. Surveys Monogr. 161 (2010) 1-15.
Book volume table of contents   
View Article: PDF

[26] Kanishka Perera, Ravi P. Agarwal and Donal O’Regan. Abstract formulation and examples. Math. Surveys Monogr. 161 (2010) 17-26.
Book volume table of contents   
View Article: PDF

[27] Kanishka Perera, Ravi P. Agarwal and Donal O’Regan. $p$-Linear eigenvalue problems. Math. Surveys Monogr. 161 (2010) 71-77.
Book volume table of contents   
View Article: PDF

[28] Kanishka Perera, Ravi P. Agarwal and Donal O’Regan. Jumping nonlinearities and the Dancer-Fu\v c\'\i k spectrum. Math. Surveys Monogr. 161 (2010) 97-107.
Book volume table of contents   
View Article: PDF

[29] Kanishka Perera, Ravi P. Agarwal and Donal O’Regan. Critical point theory. Math. Surveys Monogr. 161 (2010) 45-69.
Book volume table of contents   
View Article: PDF

[30] Kanishka Perera, Ravi P. Agarwal and Donal O’Regan. Existence theory. Math. Surveys Monogr. 161 (2010) 79-86.
Book volume table of contents   
View Article: PDF


Results: 1 to 30 of 32 found      Go to page: 1 2


Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia