American Mathematical Society

My Account · My Cart · Customer Services · FAQ  
AMS eContent Search Results
Matches for: msc=(37D30) AND publication=(tran)
Sort order: Date
Format: Standard display

  
Results: 1 to 10 of 10 found      Go to page: 1

[1] Shuhei Hayashi. A $C^2$ generic trichotomy for diffeomorphisms: Hyperbolicity or zero Lyapunov exponents or the $C^1$ creation of homoclinic bifurcations. Trans. Amer. Math. Soc. 366 (2014) 5613-5651.
Abstract, references, and article information   
View Article: PDF

[2] C. Bonatti, S. Crovisier, N. Gourmelon and R. Potrie. Tame dynamics and robust transitivity chain-recurrence classes versus homoclinic classes. Trans. Amer. Math. Soc. 366 (2014) 4849-4871.
Abstract, references, and article information   
View Article: PDF

[3] Huyi Hu and Yujun Zhu. Quasi-stability of partially hyperbolic diffeomorphisms. Trans. Amer. Math. Soc. 366 (2014) 3787-3804.
Abstract, references, and article information   
View Article: PDF

[4] Christian Bonatti, Ming Li and Dawei Yang. On the existence of attractors. Trans. Amer. Math. Soc. 365 (2013) 1369-1391.
Abstract, references, and article information   
View Article: PDF

[5] Artur Avila and Jairo Bochi. Nonuniform hyperbolicity, global dominated splittings and generic properties of volume-preserving diffeomorphisms. Trans. Amer. Math. Soc. 364 (2012) 2883-2907.
Abstract, references, and article information   
View Article: PDF

[6] Martin Andersson. Robust ergodic properties in partially hyperbolic dynamics. Trans. Amer. Math. Soc. 362 (2010) 1831-1867. MR 2574879.
Abstract, references, and article information
View Article: PDF

[7] V. Araujo, M. J. Pacifico, E. R. Pujals and M. Viana. Singular-hyperbolic attractors are chaotic. Trans. Amer. Math. Soc. 361 (2009) 2431-2485. MR 2471925.
Abstract, references, and article information
View Article: PDF

[8] Radu Saghin and Zhihong Xia. Partial hyperbolicity or dense elliptic periodic points for $C^1$-generic symplectic diffeomorphisms. Trans. Amer. Math. Soc. 358 (2006) 5119-5138. MR 2231887.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[9] Dmitry Dolgopyat. Limit theorems for partially hyperbolic systems. Trans. Amer. Math. Soc. 356 (2004) 1637-1689. MR 2034323.
Abstract, references, and article information
View Article: PDF
This article is available free of charge

[10] Peter W. Bates, Kening Lu and Chongchun Zeng. Invariant foliations near normally hyperbolic invariant manifolds for semiflows. Trans. Amer. Math. Soc. 352 (2000) 4641-4676. MR 1675237.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge


Results: 1 to 10 of 10 found      Go to page: 1