American Mathematical Society

My Account · My Cart · Customer Services · FAQ  
AMS eContent Search Results
Matches for: msc=(37K40) AND publication=(all)
Sort order: Date
Format: Standard display

  
Results: 1 to 28 of 28 found      Go to page: 1

[1] I. Egorova and L. Pastur. Asymptotic properties of polynomials orthogonal with respect to varying weights, and related topics of spectral theory. St. Petersburg Math. J. 25 (2014) 223-240.
Abstract, references, and article information   
View Article: PDF

[2] Jacek Szmigielski and Lingjun Zhou. Peakon-antipeakon interactions in the Degasperis-Procesi equation. Contemporary Mathematics 593 (2013) 83-107.
Book volume table of contents   
View Article: PDF

[3] Jeffery C. DiFranco and Peter D. Miller. The semiclassical modified nonlinear Schr\"odinger equation II: Asymptotic analysis of the Cauchy problem. The elliptic region for transsonic initial data. Contemporary Mathematics 593 (2013) 29-81.
Book volume table of contents   
View Article: PDF

[4] Miguel A. Alejo, Claudio Muñoz and Luis Vega. The Gardner equation and the $L^2$-stability of the $N$-soliton solution of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 365 (2013) 195-212.
Abstract, references, and article information   
View Article: PDF

[5] Johanna Michor. On the spatial asymptotics of solutions of the Ablowitz–Ladik hierarchy. Proc. Amer. Math. Soc. 138 (2010) 4249-4258. MR 2680051.
Abstract, references, and article information   
View Article: PDF

[6] Jaime Angulo Pava. Nonlinear Dispersive Equations. Math. Surveys Monogr. 156 (2009) MR MR2567568.
Book volume table of contents   

[7] Jaime Angulo Pava. Instability of solitary wave solutions. Math. Surveys Monogr. 156 (2009) 137-158.
Book volume table of contents   
View Article: PDF

[8] Jaime Angulo Pava. Introduction to part 4: the concentration-compactness principle in the stability theory. Math. Surveys Monogr. 156 (2009) 105-105.
Book volume table of contents   
View Article: PDF

[9] Jaime Angulo Pava. More about the Concentration-Compactness Principle. Math. Surveys Monogr. 156 (2009) 127-136.
Book volume table of contents   
View Article: PDF

[10] Jaime Angulo Pava. Introduction to part 3: stability theory. Math. Surveys Monogr. 156 (2009) 69-69.
Book volume table of contents   
View Article: PDF

[11] Jaime Angulo Pava. Existence and stability of solitary waves for the GBO equations. Math. Surveys Monogr. 156 (2009) 105-126.
Book volume table of contents   
View Article: PDF

[12] Jaime Angulo Pava. Solitary and periodic travelling wave solutions. Math. Surveys Monogr. 156 (2009) 25-45.
Book volume table of contents   
View Article: PDF

[13] Jaime Angulo Pava. Introduction and a brief review of the history. Math. Surveys Monogr. 156 (2009) 3-15.
Book volume table of contents   
View Article: PDF

[14] Jaime Angulo Pava. Operator theory. Math. Surveys Monogr. 156 (2009) 211-243.
Book volume table of contents   
View Article: PDF

[15] Jaime Angulo Pava. Basic models. Math. Surveys Monogr. 156 (2009) 17-23.
Book volume table of contents   
View Article: PDF

[16] Jaime Angulo Pava. Stability of cnoidal waves. Math. Surveys Monogr. 156 (2009) 161-198.
Book volume table of contents   
View Article: PDF

[17] Jaime Angulo Pava. Introduction to part 5: stability of periodic travelling waves. Math. Surveys Monogr. 156 (2009) 161-161.
Book volume table of contents   
View Article: PDF

[18] Jaime Angulo Pava. Sobolev spaces and elliptic functions. Math. Surveys Monogr. 156 (2009) 201-210.
Book volume table of contents   
View Article: PDF

[19] Jaime Angulo Pava. Initial value problem. Math. Surveys Monogr. 156 (2009) 49-59.
Book volume table of contents   
View Article: PDF

[20] Jaime Angulo Pava. Grillakis-Shatah-Strauss's stability approach. Math. Surveys Monogr. 156 (2009) 91-102.
Book volume table of contents   
View Article: PDF

[21] Jaime Angulo Pava. Introduction to part 6: appendix. Math. Surveys Monogr. 156 (2009) 201-201.
Book volume table of contents   
View Article: PDF

[22] Jaime Angulo Pava. Introduction to part 2: well-posedness and stability definition. Math. Surveys Monogr. 156 (2009) 49-49.
Book volume table of contents   
View Article: PDF

[23] Jaime Angulo Pava. Definition of stability. Math. Surveys Monogr. 156 (2009) 61-65.
Book volume table of contents   
View Article: PDF

[24] Jaime Angulo Pava. Orbital stability---the classical method. Math. Surveys Monogr. 156 (2009) 69-89.
Book volume table of contents   
View Article: PDF

[25] Scipio Cuccagna. On asymptotic stability in 3D of kinks for the $\phi ^4$ model. Trans. Amer. Math. Soc. 360 (2008) 2581-2614. MR 2373326.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[26] J. Krieger and W. Schlag. Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension. J. Amer. Math. Soc. 19 (2006) 815-920. MR 2219305.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[27] Wen-Xiu Ma and Yuncheng You. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans. Amer. Math. Soc. 357 (2005) 1753-1778. MR 2115075.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[28] David M. A. Stuart. Solitons on pseudo-Riemannian manifolds: stability and motion. Electron. Res. Announc. Amer. Math. Soc. 6 (2000) 75-89. MR 1783091.
Abstract, references, and article information   
View Article: PDF


Results: 1 to 28 of 28 found      Go to page: 1