American Mathematical Society

My Account · My Cart · Customer Services · FAQ  
AMS eContent Search Results
Matches for: msc=(37K40) AND publication=(all)
Sort order: Date
Format: Standard display

  
Results: 1 to 30 of 45 found      Go to page: 1 2

[1] I. Egorova and L. Pastur. Asymptotic properties of polynomials orthogonal with respect to varying weights, and related topics of spectral theory. St. Petersburg Math. J. 25 (2014) 223-240.
Abstract, references, and article information   
View Article: PDF

[2] Jacek Szmigielski and Lingjun Zhou. Peakon-antipeakon interactions in the Degasperis-Procesi equation. Contemporary Mathematics 593 (2013) 83-107.
Book volume table of contents   
View Article: PDF

[3] Jeffery C. DiFranco and Peter D. Miller. The semiclassical modified nonlinear Schr\"odinger equation II: Asymptotic analysis of the Cauchy problem. The elliptic region for transsonic initial data. Contemporary Mathematics 593 (2013) 29-81.
Book volume table of contents   
View Article: PDF

[4] Miguel A. Alejo, Claudio Muñoz and Luis Vega. The Gardner equation and the $L^2$-stability of the $N$-soliton solution of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 365 (2013) 195-212.
Abstract, references, and article information   
View Article: PDF

[5] Alex Kasman. Concluding remarks. The Student Mathematical Library 54 (2010) 251-255.
Book volume table of contents   
View Article: PDF

[6] Alex Kasman. The Grassmann cone $\Gamma _{2,4}$ and the bilinear KP equation. The Student Mathematical Library 54 (2010) 197-218.
Book volume table of contents   
View Article: PDF

[7] Alex Kasman. The Grassman cone $\Gamma _{k,n}$ and the bilinear KP hierarchy. The Student Mathematical Library 54 (2010) 235-249.
Book volume table of contents   
View Article: PDF

[8] Alex Kasman. Eigenfunctions and isospectrality. The Student Mathematical Library 54 (2010) 133-147.
Book volume table of contents   
View Article: PDF

[9] Alex Kasman. Pseudo-differential operators and the KP hierarchy. The Student Mathematical Library 54 (2010) 219-234.
Book volume table of contents   
View Article: PDF

[10] Alex Kasman. The story of solitons. The Student Mathematical Library 54 (2010) 45-66.
Book volume table of contents   
View Article: PDF

[11] Alex Kasman. Differential equations. The Student Mathematical Library 54 (2010) 1-22.
Book volume table of contents   
View Article: PDF

[12] Alex Kasman. Developing PDE intuition. The Student Mathematical Library 54 (2010) 23-44.
Book volume table of contents   
View Article: PDF

[13] Alex Kasman. Complex numbers. The Student Mathematical Library 54 (2010) 269-274.
Book volume table of contents   
View Article: PDF

[14] Alex Kasman. Mathematica guide. The Student Mathematical Library 54 (2010) 257-268.
Book volume table of contents   
View Article: PDF

[15] Alex Kasman. KdV $n$-solitons. The Student Mathematical Library 54 (2010) 95-112.
Book volume table of contents   
View Article: PDF

[16] Alex Kasman. The KP equation and bilinear KP equation. The Student Mathematical Library 54 (2010) 173-196.
Book volume table of contents   
View Article: PDF

[17] Alex Kasman. Ideas for independent projects. The Student Mathematical Library 54 (2010) 275-287.
Book volume table of contents   
View Article: PDF

[18] Alex Kasman. Elliptic curves and KdV traveling waves. The Student Mathematical Library 54 (2010) 67-94.
Book volume table of contents   
View Article: PDF

[19] Alex Kasman. Glimpses of Soliton Theory. The Student Mathematical Library 54 (2010) MR MR2731261.
Book volume table of contents   

[20] Alex Kasman. Multiplying and factoring differential operators. The Student Mathematical Library 54 (2010) 113-132.
Book volume table of contents   
View Article: PDF

[21] Alex Kasman. Lax form for KdV and other soliton equations. The Student Mathematical Library 54 (2010) 149-171.
Book volume table of contents   
View Article: PDF

[22] Johanna Michor. On the spatial asymptotics of solutions of the Ablowitz–Ladik hierarchy. Proc. Amer. Math. Soc. 138 (2010) 4249-4258. MR 2680051.
Abstract, references, and article information   
View Article: PDF

[23] Jaime Angulo Pava. Nonlinear Dispersive Equations. Math. Surveys Monogr. 156 (2009) MR MR2567568.
Book volume table of contents   

[24] Jaime Angulo Pava. Instability of solitary wave solutions. Math. Surveys Monogr. 156 (2009) 137-158.
Book volume table of contents   
View Article: PDF

[25] Jaime Angulo Pava. Introduction to part 4: the concentration-compactness principle in the stability theory. Math. Surveys Monogr. 156 (2009) 105-105.
Book volume table of contents   
View Article: PDF

[26] Jaime Angulo Pava. More about the Concentration-Compactness Principle. Math. Surveys Monogr. 156 (2009) 127-136.
Book volume table of contents   
View Article: PDF

[27] Jaime Angulo Pava. Introduction to part 3: stability theory. Math. Surveys Monogr. 156 (2009) 69-69.
Book volume table of contents   
View Article: PDF

[28] Jaime Angulo Pava. Existence and stability of solitary waves for the GBO equations. Math. Surveys Monogr. 156 (2009) 105-126.
Book volume table of contents   
View Article: PDF

[29] Jaime Angulo Pava. Solitary and periodic travelling wave solutions. Math. Surveys Monogr. 156 (2009) 25-45.
Book volume table of contents   
View Article: PDF

[30] Jaime Angulo Pava. Introduction and a brief review of the history. Math. Surveys Monogr. 156 (2009) 3-15.
Book volume table of contents   
View Article: PDF


Results: 1 to 30 of 45 found      Go to page: 1 2