American Mathematical Society

My Account · My Cart · Customer Services · FAQ  
AMS eContent Search Results
Matches for: msc=(37K45) AND publication=(all)
Sort order: Date
Format: Standard display

  
Results: 1 to 24 of 24 found      Go to page: 1

[1] I. Egorova and L. Pastur. Asymptotic properties of polynomials orthogonal with respect to varying weights, and related topics of spectral theory. St. Petersburg Math. J. 25 (2014) 223-240.
Abstract, references, and article information
View Article: PDF

[2] Y. Charles Li. Stability criteria of 3D inviscid shears. Quart. Appl. Math. 69 (2011) 379-387.
Abstract, references, and article information
View Article: PDF

[3] Jaime Angulo Pava. Nonlinear Dispersive Equations. Math. Surveys Monogr. 156 (2009) MR MR2567568.
Book volume table of contents

[4] Jaime Angulo Pava. Instability of solitary wave solutions. Math. Surveys Monogr. 156 (2009) 137-158.
Book volume table of contents
View Article: PDF

[5] Jaime Angulo Pava. Introduction to part 4: the concentration-compactness principle in the stability theory. Math. Surveys Monogr. 156 (2009) 105-105.
Book volume table of contents
View Article: PDF

[6] Jaime Angulo Pava. More about the Concentration-Compactness Principle. Math. Surveys Monogr. 156 (2009) 127-136.
Book volume table of contents
View Article: PDF

[7] Jaime Angulo Pava. Introduction to part 3: stability theory. Math. Surveys Monogr. 156 (2009) 69-69.
Book volume table of contents
View Article: PDF

[8] Jaime Angulo Pava. Existence and stability of solitary waves for the GBO equations. Math. Surveys Monogr. 156 (2009) 105-126.
Book volume table of contents
View Article: PDF

[9] Jaime Angulo Pava. Solitary and periodic travelling wave solutions. Math. Surveys Monogr. 156 (2009) 25-45.
Book volume table of contents
View Article: PDF

[10] Jaime Angulo Pava. Introduction and a brief review of the history. Math. Surveys Monogr. 156 (2009) 3-15.
Book volume table of contents
View Article: PDF

[11] Jaime Angulo Pava. Operator theory. Math. Surveys Monogr. 156 (2009) 211-243.
Book volume table of contents
View Article: PDF

[12] Jaime Angulo Pava. Basic models. Math. Surveys Monogr. 156 (2009) 17-23.
Book volume table of contents
View Article: PDF

[13] Jaime Angulo Pava. Stability of cnoidal waves. Math. Surveys Monogr. 156 (2009) 161-198.
Book volume table of contents
View Article: PDF

[14] Jaime Angulo Pava. Introduction to part 5: stability of periodic travelling waves. Math. Surveys Monogr. 156 (2009) 161-161.
Book volume table of contents
View Article: PDF

[15] Jaime Angulo Pava. Sobolev spaces and elliptic functions. Math. Surveys Monogr. 156 (2009) 201-210.
Book volume table of contents
View Article: PDF

[16] Jaime Angulo Pava. Initial value problem. Math. Surveys Monogr. 156 (2009) 49-59.
Book volume table of contents
View Article: PDF

[17] Jaime Angulo Pava. Grillakis-Shatah-Strauss's stability approach. Math. Surveys Monogr. 156 (2009) 91-102.
Book volume table of contents
View Article: PDF

[18] Jaime Angulo Pava. Introduction to part 6: appendix. Math. Surveys Monogr. 156 (2009) 201-201.
Book volume table of contents
View Article: PDF

[19] Jaime Angulo Pava. Introduction to part 2: well-posedness and stability definition. Math. Surveys Monogr. 156 (2009) 49-49.
Book volume table of contents
View Article: PDF

[20] Jaime Angulo Pava. Definition of stability. Math. Surveys Monogr. 156 (2009) 61-65.
Book volume table of contents
View Article: PDF

[21] Jaime Angulo Pava. Orbital stability---the classical method. Math. Surveys Monogr. 156 (2009) 69-89.
Book volume table of contents
View Article: PDF

[22] H. S. Bhat and R. C. Fetecau. Stability of fronts for a regularization of the Burgers equation. Quart. Appl. Math. 66 (2008) 473-496. MR 2445524.
Abstract, references, and article information
View Article: PDF

[23] J. Krieger and W. Schlag. Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension. J. Amer. Math. Soc. 19 (2006) 815-920. MR 2219305.
Abstract, references, and article information
View Article: PDF
This article is available free of charge

[24] David M. A. Stuart. Solitons on pseudo-Riemannian manifolds: stability and motion. Electron. Res. Announc. Amer. Math. Soc. 6 (2000) 75-89. MR 1783091.
Abstract, references, and article information
View Article: PDF


Results: 1 to 24 of 24 found      Go to page: 1