American Mathematical Society

My Account · My Cart · Customer Services · FAQ  
AMS eContent Search Results
Matches for: msc=(44A20) AND publication=(all)
Sort order: Date
Format: Standard display

  
Results: 1 to 8 of 8 found      Go to page: 1

[1] Ana F. Loureiro, P. Maroni and S. Yakubovich. On a polynomial sequence associated with the Bessel operator. Proc. Amer. Math. Soc. 142 (2014) 467-482.
Abstract, references, and article information   
View Article: PDF

[2] Sarah Chisholm, Alyson Deines and Holly Swisher. Recent Advances for Ramanujan Type Supercongruences. Contemporary Mathematics 606 (2013) 189-206.
Book volume table of contents   
View Article: PDF

[3] Luís Daniel Abreu and Fethi Bouzeffour. A Paley-Wiener theorem for the Askey-Wilson function transform. Proc. Amer. Math. Soc. 138 (2010) 2853-2862. MR 2644898.
Abstract, references, and article information   
View Article: PDF

[4] Tibor K. Pogány and Endre Süli. Integral representation for Neumann series of Bessel functions. Proc. Amer. Math. Soc. 137 (2009) 2363-2368. MR 2495270.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[5] K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song and I. Yoo. Sequential Fourier-Feynman transform, convolution and first variation. Trans. Amer. Math. Soc. 360 (2008) 1819-1838. MR 2366964.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[6] Óscar Ciaurri and Krzysztof Stempak. Transplantation and multiplier theorems for Fourier-Bessel expansions. Trans. Amer. Math. Soc. 358 (2006) 4441-4465. MR 2231384.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[7] Ahmed I. Zayed. On the singularities of the continuous Jacobi transform when $\alpha+\beta=0$ . Proc. Amer. Math. Soc. 101 (1987) 67-75. MR 897072.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[8] A. M. Cormack. The Radon transform on a family of curves in the plane. II . Proc. Amer. Math. Soc. 86 (1982) 293-298. MR 667292.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge


Results: 1 to 8 of 8 found      Go to page: 1


Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia