American Mathematical Society

My Account · My Cart · Customer Services · FAQ  
AMS eContent Search Results
Matches for: msc=(76B03) AND publication=(tran)
Sort order: Date
Format: Standard display

  
Results: 1 to 8 of 8 found      Go to page: 1

[1] Robin Ming Chen, Yue Liu and Pingzheng Zhang. Local regularity and decay estimates of solitary waves for the rotation-modified Kadomtsev-Petviashvili equation. Trans. Amer. Math. Soc. 364 (2012) 3395-3425.
Abstract, references, and article information   
View Article: PDF

[2] D. Barbato, F. Flandoli and F. Morandin. Energy dissipation and self-similar solutions for an unforced inviscid dyadic model. Trans. Amer. Math. Soc. 363 (2011) 1925-1946. MR 2746670.
Abstract, references, and article information   
View Article: PDF

[3] Athanassios S. Fokas and Laihan Luo. On the asymptotic linearization of acoustic waves. Trans. Amer. Math. Soc. 360 (2008) 6403-6445. MR 2434293.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[4] Milton C. Lopes Filho, Helena J. Nussenzveig Lopes and Steven Schochet. A criterion for the equivalence of the Birkhoff-Rott and Euler descriptions of vortex sheet evolution. Trans. Amer. Math. Soc. 359 (2007) 4125-4142. MR 2309179.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[5] Nets Hawk Katz and Natasa Pavlovic. Finite time blow-up for a dyadic model of the Euler equations. Trans. Amer. Math. Soc. 357 (2005) 695-708. MR 2095627.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[6] Anna L. Mazzucato. Besov-Morrey spaces: Function space theory and applications to non-linear PDE. Trans. Amer. Math. Soc. 355 (2003) 1297-1364. MR 1946395.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[7] Jerry L. Bona, S. M. Sun and Bing-Yu Zhang. A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane. Trans. Amer. Math. Soc. 354 (2002) 427-490. MR 1862556.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[8] A. C. Schaeffer. Existence theorem for the flow of an ideal incompressible fluid in two dimensions . Trans. Amer. Math. Soc. 42 (1937) 497-513. MR 1501931.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge


Results: 1 to 8 of 8 found      Go to page: 1