AMS eContent Search Results
Matches for: msc=(91B12) AND publication=(all)
Sort order: Date
Format: Standard display

  
Results: 1 to 20 of 20 found      Go to page: 1

[1] Karl-Dieter Crisman and Michael E. Orrison. Representation theory of the symmetric group in voting theory and game theory. Contemporary Mathematics 685 (2017) 97-115.
Book volume table of contents   
View Article: PDF

[2] Maria Margaret Klawe, Kathryn L. Nyman, Jacob N. Scott and Francis Edward Su. Double-interval societies. Contemporary Mathematics 624 (2014) 135-146.
Book volume table of contents   
View Article: PDF

[3] Steven J. Brams and D. Marc Kilgour. When does approval voting make the ``right choices''?. Contemporary Mathematics 624 (2014) 37-53.
Book volume table of contents   
View Article: PDF

[4] Karl-Dieter Crisman. The Borda Count, the Kemeny Rule, and the Permutahedron. Contemporary Mathematics 624 (2014) 101-134.
Book volume table of contents   
View Article: PDF

[5] Matt Davis, Michael E. Orrison and Francis Edward Su. Voting for committees in agreeable societies. Contemporary Mathematics 624 (2014) 147-157.
Book volume table of contents   
View Article: PDF

[6] Catherine Stenson. Weighted voting, threshold functions, and zonotopes. Contemporary Mathematics 624 (2014) 89-99.
Book volume table of contents   
View Article: PDF

[7] Zeph Landau and Francis Edward Su. Fair division and redistricting. Contemporary Mathematics 624 (2014) 17-36.
Book volume table of contents   
View Article: PDF

[8] Thomas C. Ratliff. Selecting diverse committees with candidates from multiple categories. Contemporary Mathematics 624 (2014) 159-175.
Book volume table of contents   
View Article: PDF

[9] 10. Proportional (mis)representation. Mathematical World 22 (2005) 191-215.
Book volume table of contents
View Article: PDF

[10] 7. Calculating corruption. Mathematical World 22 (2005) 121-145.
Book volume table of contents
View Article: PDF

[11] 3. Back into the ring. Mathematical World 22 (2005) 37-57.
Book volume table of contents
View Article: PDF

[12] 1. What's so good about majority rule?. Mathematical World 22 (2005) 1-15.
Book volume table of contents
View Article: PDF

[13] 2. Perot, Nader, and other inconveniences. Mathematical World 22 (2005) 17-36.
Book volume table of contents
View Article: PDF

[14] Jonathan K. Hodge and Richard E. Klima. The Mathematics of Voting and Elections: A Hands-On Approach. Mathematical World 22 (2005) MR MR2139211.
Book volume table of contents

[15] 5. Explaining the impossible. Mathematical World 22 (2005) 79-101.
Book volume table of contents
View Article: PDF

[16] 9. Trouble in direct democracy. Mathematical World 22 (2005) 169-190.
Book volume table of contents
View Article: PDF

[17] 4. Trouble in democracy. Mathematical World 22 (2005) 59-77.
Book volume table of contents
View Article: PDF

[18] 6. One person, one vote?. Mathematical World 22 (2005) 103-120.
Book volume table of contents
View Article: PDF

[19] 8. The ultimate college experience. Mathematical World 22 (2005) 147-167.
Book volume table of contents
View Article: PDF

[20] E. V. Huntington. The apportionment of representatives in Congress . Trans. Amer. Math. Soc. 30 (1928) 85-110. MR 1501423.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge


Results: 1 to 20 of 20 found      Go to page: 1