American Mathematical Society

My Account · My Cart · Customer Services · FAQ  
AMS eContent Search Results
Matches for: msc=(16B50) AND publication=(all)
Sort order: Date
Format: Standard display

  
Results: 1 to 18 of 18 found      Go to page: 1

[1] Catharina Stroppel and Joshua Sussan. Categorified Jones-Wenzl Projectors: a comparison. Contemporary Mathematics 610 (2014) 333-351.
Book volume table of contents   
View Article: PDF

[2] Manuel L. Reyes. Sheaves That Fail to Represent Matrix Rings. Contemporary Mathematics 609 (2014) 285-297.
Book volume table of contents   
View Article: PDF

[3] Claude Cibils, Maria Julia Redondo and Andrea Solotar. Full and convex linear subcategories are incompressible. Proc. Amer. Math. Soc. 141 (2013) 1939-1946.
Abstract, references, and article information   
View Article: PDF

[4] Riccardo Colpi and Kent R. Fuller. Tilting objects in abelian categories and quasitilted rings. Trans. Amer. Math. Soc. 359 (2007) 741-765. MR 2255195.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[5] Dieter Happel and Idun Reiten. A characterization of the hereditary categories derived equivalent to some category of coherent sheaves on a weighted projective line. Proc. Amer. Math. Soc. 130 (2002) 643-651. MR 1866014.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[6] Peter Dräxler, Idun Reiten, Sverre O. Smal\o, Øyvind Solberg and with an appendix by B. Keller. Exact categories and vector space categories. Trans. Amer. Math. Soc. 351 (1999) 647-682. MR 1608305.
Abstract, references, and article information   
View Article: PDF
This article is available free of charge

[7] George M. Bergman and Adam O. Hausknecht. Multilinear algebra of representable functors on $k-\mathrm {Ring}^1$. Math. Surveys Monogr. 45 (1996) 277-294.
Book volume table of contents   
View Article: PDF

[8] George M. Bergman and Adam O. Hausknecht. Cogroups and Co-rings in Categories of Associative Rings. Math. Surveys Monogr. 45 (1996) MR MR1387111.
Book volume table of contents   

[9] George M. Bergman and Adam O. Hausknecht. Representable functors from rings to general groups and semigroups. Math. Surveys Monogr. 45 (1996) 175-208.
Book volume table of contents   
View Article: PDF

[10] George M. Bergman and Adam O. Hausknecht. Directions for further investigation. Math. Surveys Monogr. 45 (1996) 295-347.
Book volume table of contents   
View Article: PDF

[11] George M. Bergman and Adam O. Hausknecht. Representable functors from rings to abelian groups. Math. Surveys Monogr. 45 (1996) 35-59.
Book volume table of contents   
View Article: PDF

[12] George M. Bergman and Adam O. Hausknecht. Introduction. Math. Surveys Monogr. 45 (1996) 1-8.
Book volume table of contents   
View Article: PDF

[13] George M. Bergman and Adam O. Hausknecht. Review of coalgebras and representable functors. Math. Surveys Monogr. 45 (1996) 9-34.
Book volume table of contents   
View Article: PDF

[14] George M. Bergman and Adam O. Hausknecht. Representable functors from algebras over a field to rings. Math. Surveys Monogr. 45 (1996) 99-143.
Book volume table of contents   
View Article: PDF

[15] George M. Bergman and Adam O. Hausknecht. Representable functors on categories of Lie algebras. Math. Surveys Monogr. 45 (1996) 259-276.
Book volume table of contents   
View Article: PDF

[16] George M. Bergman and Adam O. Hausknecht. Digressions on semigroups, etc.. Math. Surveys Monogr. 45 (1996) 61-98.
Book volume table of contents   
View Article: PDF

[17] George M. Bergman and Adam O. Hausknecht. Representable functors from $k$-rings to rings. Math. Surveys Monogr. 45 (1996) 145-173.
Book volume table of contents   
View Article: PDF

[18] George M. Bergman and Adam O. Hausknecht. Representable functors on categories of commutative associative algebras. Math. Surveys Monogr. 45 (1996) 209-257.
Book volume table of contents   
View Article: PDF


Results: 1 to 18 of 18 found      Go to page: 1