Skip to main content

Algebraic Aspects of Multiple Zeta Values

  • Conference paper
Zeta Functions, Topology and Quantum Physics

Part of the book series: Developments in Mathematics ((DEVM,volume 14))

Abstract

Multiple zeta values have been studied by a wide variety of methods. In this article we summarize some of the results about them that can be obtained by an algebraic approach. This involves “coding” the multiple zeta values by monomials in two noncommuting variables x and y. Multiple zeta values can then be thought of as defining a map ζ: ℌ0R from a graded rational vector space ℌ0 generated by the “admissible words” of the noncommutative polynomial algebra Qx,y〉. Now ℌ0 admits two (commutative) products making ζ a homomorphism-the shuffle product and the “harmonic” product. The latter makes ℌ0 a subalgebra of the algebra QSym of quasi-symmetric functions. We also discuss some results about multiple zeta values that can be stated in terms of derivations and cyclic derivations of Qx,y〉, and we define an action of QSym on Qx,y〉 that appears useful. Finally, we apply the algebraic approach to relations of finite partial sums of multiple zeta value series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Borwein, D. M. Bradley, and D. J. Broadhurst, Evaluation of k-fold Euler/Zagier sums: a compendium of results for arbitrary k, Electron. J. Combin. 4(2) (1997), Res. Art. 5.

    Google Scholar 

  2. J. M. Borwein, D. M. Bradley, D. J. Broadhurst, and P. Lisoněk, Combinatorial aspects of multiple zeta values, Electron. J. Combin. 5 (1998), Res. Art. 38.

    Google Scholar 

  3. J. M. Borwein, D. M. Bradley, D. J. Broadhurst, and P. Lisoněk, Special values of multidimensional polylogarithms, Trans. Amer. Math. Soc. 353 (2001), 907–941.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. M. Borwein and R. Girgensohn, Evaluation of triple Euler sums, with appendix by D. J. Broadhurst, Electron. J. Combin. 3 (1996), Res. Art. 23.

    Google Scholar 

  5. D. Bowman and D. M. Bradley, Multiple polylogarithms: a brief survey, in q-Series with Applications to Combinatorics, Number Theory, and Physics, Contemp. Math., Vol. 291, American Mathematical Society, Providence, 2001, pp. 71–92.

    Google Scholar 

  6. D. Bowman and D. M. Bradley, The algebra and combinatorics of multiple zeta values, J. Combin. Theory Ser. A 97 (2002), 43–61.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Ehrenborg, On posets and Hopf algebras, Adv. Math. 119 (1996), 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Euler, Meditationes circa singulare serierum genus, Novi Comm. Acad. Sci. Petropol. 20 (1775), 140–186; reprinted in Opera Omnia, Ser. I, Vol. 15, B. G. Teubner, Berlin, 1927, pp. 217–267.

    Google Scholar 

  9. L. Euler, Demonstratio insignis theorematis numerici circa unicias potestatum binomialium, Nova Acta Acad. Sci. Petropol. 15 (1799/1802), 33–43; reprinted in Opera Omnia, Ser. I, Vol. 16(2), B. G. Teubner, Leipzig, 1935, pp. 104–116.

    Google Scholar 

  10. L. Geissinger, Hopf algebras of symmetric functions and class functions, in Combinatoire et représentation de groupe symmétrique (Strasbourg, 1976), Lecture Notes in Math., Vol. 579, Springer-Verlag, New York, 1977, pp. 168–181.

    Chapter  Google Scholar 

  11. I. M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, and J.-Y. Thibon, Noncommutative symmetric functions, Adv. Math. 112 (1995), 218–348.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. M. Gessel, Multipartite P-partitions and inner products of skew Schur functions, in Combinatorics and Algebra, Contemp. Math., Vol. 34, American Mathematical Society, Providence, 1984, pp. 289–301.

    Google Scholar 

  13. A. Granville, A decomposition of Riemann’s zeta-function, in Analytic Number Theory, London Math. Soc. Lecture Notes Ser., Vol. 247, Cambridge University Press, Cambridge, 1997, pp. 95–101.

    Google Scholar 

  14. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford University Press, London, 1960.

    MATH  Google Scholar 

  15. V. Hernández, Solution IV to Problem 10490, Amer. Math. Monthly 106 (1999), 589.

    Google Scholar 

  16. Hoang Ngoc Minh, G. Jacob, M. Pétitot, and N. E. Oussous, Aspects combinatoires des polylogarithmes et des sommes d’Euler-Zagier, Sém. Lothar. Combin. 43 (1999), Art. B43e.

    Google Scholar 

  17. M. E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), 275–290.

    MathSciNet  MATH  Google Scholar 

  18. M. E. Hoffman, The algebra of multiple harmonic series, J. Algebra 194 (1997), 477–495.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. E. Hoffman, Quasi-shuffle products, J. Algebraic Combin. 11 (2000), 49–68.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. E. Hoffman, Periods of mirrors and multiple zeta values, Proc. Amer. Math. Soc. 130 (2002), 971–974.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. E. Hoffman and Y. Ohno, Relations of multiple zeta values and their algebraic expression, J. Algebra 262 (2003), 332–347.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Ihara and M. Kaneko, A note on relations of multiple zeta values, preprint.

    Google Scholar 

  23. C. Kassel, Quantum Groups, Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  24. D. Kreimer, Knots and Feynman Diagrams, Cambridge Lect. Notes in Physics, Vol. 13, Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  25. T. Q. T. Le and J. Murakami, Kontsevich’s integral for the Homfly polynomial and relations between values of the multiple zeta functions, Topology Appl. 62 (1995), 193–206.

    Article  MathSciNet  Google Scholar 

  26. I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford University Press, New York, 1995.

    MATH  Google Scholar 

  27. J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–261.

    Article  MathSciNet  Google Scholar 

  28. N. Nielsen, Handbuch der Theorie der Gammafunktion, Teubner, Leipzig, 1906; reprinted in Die Gammafunktion, Chelsea, New York, 1965.

    Google Scholar 

  29. Y. Ohno, A generalization of the duality and sum formulas on the multiple zeta values, J. Number Theory 74 (1999), 189–209.

    Article  MathSciNet  Google Scholar 

  30. Y. Ohno and D. Zagier, Multiple zeta values of fixed weight, depth, and height, Indag. Math. (N.S.) 12 (2001), 483–487.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. E. Radford, A natural ring basis for the shuffle algebra and an application to group schemes, J. Algebra 58 (1979), 432–454.

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Ree, Lie elements and an algebra associated with shuffles, Ann. of Math. (2) 68 (1958), 210–220.

    Article  MathSciNet  Google Scholar 

  33. G.-C. Rota, B. Sagan, and P. R. Stein, A cyclic derivative in noncommutative algebra, J. Algebra 64 (1980), 54–75.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Sweedler, Hopf Algebras, W. A. Benjamin, Inc., New York, 1969.

    Google Scholar 

  35. L. Tornheim, Harmonic double series, Am. J. Math 72 (1950), 303–314.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. A. M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys. A 14 (1999), 2037–2076.

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Voiculescu, A note on cyclic gradients, Indiana U. Math. J. 49 (2000), 837–841.

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Waldschmidt, Valeurs zêta multiples. Une introduction, J. Théor. Nombres Bordeaux 12 (2000), 581–595.

    MathSciNet  MATH  Google Scholar 

  39. D. Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics, Vol. II (Paris, 1992), Birkhäuser, Boston, 1994, pp. 497–512.

    Google Scholar 

  40. J. Zhao, Partial sums of multiple zeta value series I: Generalizations of Wolstenholme’s theorem, preprint math.NT/0301252.

    Google Scholar 

  41. W. Zudilin, Algebraic relations for multiple zeta values (Russian), Uspekhi Mat. Nauk 58 (2003), 3–32; translation in Russian Math. Surveys 58 (2003), 1–29.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this paper

Cite this paper

Hoffman, M.E. (2005). Algebraic Aspects of Multiple Zeta Values. In: Aoki, T., Kanemitsu, S., Nakahara, M., Ohno, Y. (eds) Zeta Functions, Topology and Quantum Physics. Developments in Mathematics, vol 14. Springer, Boston, MA. https://doi.org/10.1007/0-387-24981-8_4

Download citation

Publish with us

Policies and ethics