Skip to main content

Linear Independence of Finite Gabor Systems

  • Chapter
Book cover Harmonic Analysis and Applications

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

This chapter is an introduction to an open conjecture in time-frequency analysis on the linear independence of a finite set of time-frequency shifts of a given L 2 function. Background and motivation for the conjecture are provided in the form of a survey of related ideas, results, and open problems in frames, Gabor systems, and other aspects of time-frequency analysis, especially those related to independence. The partial results that are known to hold for the conjecture are also presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aldroubi, C. A. Cabrelli, and U. M. Molter, Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for L 2(ℝd), Appl. Comput. Harmon. Anal., 17 (2004), pp. 119–140.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Review, 43 (2001), pp. 585–620.

    Article  MATH  MathSciNet  Google Scholar 

  3. K. I. Babenko, On conjugate functions (Russian), Doklady Akad. Nauk SSSR (N. S.), 62 (1948), pp. 157–160.

    MATH  MathSciNet  Google Scholar 

  4. L. Baggett, Processing a radar signal and representations of the discrete Heisenberg group, Colloq. Math., 60/61 (1990), pp. 195–203.

    MathSciNet  Google Scholar 

  5. L. Baggett, H. Medina, and K. Merrill, Generalized multiresolution analyses, and a construction procedure for all wavelet sets in R n, J. Fourier Anal. Appl., 6 (1999), pp. 563–573.

    Article  MathSciNet  Google Scholar 

  6. R. Balan, P. G. Casazza, C. Heil, and Z. Landau, Deficits and excesses of frames, Adv. Comput. Math., 18 (2003), pp. 93–116.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Balan, P. G. Casazza, C. Heil, and Z. Landau, Excesses of Gabor frames, Appl. Comput. Harmon. Anal., 14 (2003), pp. 87–106.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Balan, P. G. Casazza, C. Heil, and Z. Landau, Density, overcompleteness, and localization of frames, I. Theory, J. Fourier Anal. Appl., 12 (2006), pp. 105–143.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Balan, P. G. Casazza, C. Heil, and Z. Landau, Density, overcompleteness, and localization of frames, II. Gabor frames, J. Fourier Anal. Appl., to appear.

    Google Scholar 

  10. R. Balian, Un principe d’incertitude fort en théorie du signal ou en mécanique quantique, C. R. Acad. Sci. Paris, 292 (1981), pp. 1357–1362.

    MathSciNet  Google Scholar 

  11. G. Battle, Heisenberg proof of the Balian-Low theorem, Lett. Math. Phys., 15 (1988), pp. 175–177.

    Article  MathSciNet  Google Scholar 

  12. J. J. Benedetto, Gabor representations and wavelets, in: Commutative Harmonic Analysis (Canton, NY, 1987), Contemp. Math., Vol. 91, Amer. Math. Soc., Providence, RI, 1989, pp. 9–27.

    Google Scholar 

  13. J. J. Benedetto, Harmonic Analysis and Applications, CRC Press, Boca Raton, FL, 1997.

    Google Scholar 

  14. J. J. Benedetto, W. Czaja, P. Gadziński, and A. M. Powell, The Balian-Low Theorem and regularity of Gabor systems, J. Geom. Anal., 13 (2003), pp. 217–232.

    MATH  Google Scholar 

  15. J. J. Benedetto, W. Czaja, and A. Ya. Maltsev, The Balian-Low theorem for the symplectic form on R 2d, J. Math. Phys., 44 (2003), pp. 1735–1750.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. J. Benedetto and M. Fickus, Finite normalized tight frames, Adv. Comput. Math., 18 (2003), pp. 357–385.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. J. Benedetto, C. Heil, and D. F. Walnut, Differentiation and the Balian-Low Theorem, J. Fourier Anal. Appl., 1 (1995), pp. 355–402.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. J. Benedetto and M. Leon, The construction of single wavelets in D-dimensions, J. Geom. Anal., 11 (2001), pp. 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Boggess and F. J. Narcowich, A First Course in Wavelets with Fourier Analysis, Prentice-Hall, Upper Saddle River, NJ, 2001.

    MATH  Google Scholar 

  20. M. Bownik and Z. Rzeszotnik, The spectral function of shift-invariant spaces, Michigan Math. J., 51 (2003), pp. 387–414.

    Article  MATH  MathSciNet  Google Scholar 

  21. C. A. Cabrelli, C. Heil, and U. M. Molter, Self-similarity and multiwavelets in higher dimensions, Memoirs Amer. Math. Soc., 170, No. 807 (2004).

    Google Scholar 

  22. P. G. Casazza, The art of frame theory, Taiwanese J. Math., 4 (2000), pp. 129–201.

    MATH  MathSciNet  Google Scholar 

  23. P. G. Casazza, O. Christensen, A. M. Lindner, and R. Vershynin, Frames and the Feichtinger conjecture, Proc. Amer. Math. Soc., 133 (2005), pp. 1025–1033.

    Article  MATH  MathSciNet  Google Scholar 

  24. P. G. Casazza, M. Fickus, J. Kovačević, M. T. Leon, and J. C. Tremain, A physical interpretation of tight frames, Chapter 4, this volume (2006).

    Google Scholar 

  25. P. G. Casazza and N. J. Kalton, Roots of complex polynomials and Weyl-Heisenberg frame sets, Proc. Amer. Math. Soc., 130 (2002), pp. 2313–2318.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. G. Casazza and J. C. Tremain, The Kadison-Singer problem in mathematics and engineering, Proc. Natl. Acad. Sci. USA, 103 (2006), pp. 2032–2039.

    Article  MATH  MathSciNet  Google Scholar 

  27. S. Chen, D. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit, SIAM Review, 43 (2001), pp. 129–157.

    Article  MATH  MathSciNet  Google Scholar 

  28. O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003.

    MATH  Google Scholar 

  29. O. Christensen and P. G. Casazza, Frames containing a Riesz basis and preservation of this property under perturbations, SIAM J. Math. Anal., 29 (1998), pp. 266–278.

    Article  MATH  MathSciNet  Google Scholar 

  30. O. Christensen and Y. C. Eldar, Oblique dual frames and shift-invariant spaces, Appl. Comput. Harmon. Anal., 17 (2004), pp. 48–68.

    Article  MATH  MathSciNet  Google Scholar 

  31. O. Christensen and C. Heil, Perturbations of Banach frames and atomic decompositions, Math. Nachr., 185 (1997), pp. 33–47.

    Article  MATH  MathSciNet  Google Scholar 

  32. O. Christensen, B. Deng, and C. Heil, Density of Gabor frames, Appl. Comput. Harmon. Anal., 7 (1999), pp. 292–304.

    Article  MATH  MathSciNet  Google Scholar 

  33. O. Christensen and A. M. Lindner, Frames of exponentials: lower frame bounds for finite subfamilies, and approximation of the inverse frame operator, Linear Algebra Appl., 323 (2001), pp. 117–130.

    Article  MATH  MathSciNet  Google Scholar 

  34. O. Christensen and A. M. Lindner, Lower bounds for finite wavelet and Gabor systems, Approx. Theory Appl. (N.S.), 17 (2001), pp. 18–29.

    MATH  MathSciNet  Google Scholar 

  35. O. Christensen and A. M. Lindner, Decompositions of wavelets and Riesz frames into a finite number of linearly independent sets, Linear Algebra Appl., 355 (2002), pp. 147–159.

    Article  MATH  MathSciNet  Google Scholar 

  36. E. Cordero and K. Gröchenig, Localization of frames. II, Appl. Comput. Harmon. Anal., 17 (2004), pp. 29–47.

    Article  MATH  MathSciNet  Google Scholar 

  37. W. Czaja, G. Kutyniok, and D. Speegle, Geometry of sets of parameters of wave packet framess, Appl. Comput. Harmon. Anal., 20 (2006), pp. 108–125.

    Article  MATH  MathSciNet  Google Scholar 

  38. W. Czaja and A. Powell, Recent developments in the Balian-Low Theorem, Chapter 5, this volume (2006).

    Google Scholar 

  39. X. Dai, D. R. Larson, and D. M. Speegle, Wavelet sets in R n, J. Fourier Anal. Appl., 3 (1997), pp. 451–456.

    MATH  MathSciNet  Google Scholar 

  40. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory, 36 (1990), pp. 961–1005.

    Article  MATH  MathSciNet  Google Scholar 

  41. I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.

    MATH  Google Scholar 

  42. I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986), pp. 1271–1283.

    Article  MATH  MathSciNet  Google Scholar 

  43. I. Daubechies and A. J. E. M. Janssen, Two theorems on lattice expansions, IEEE Trans. Inform. Theory, 39 (1993), pp. 3–6.

    Article  MATH  MathSciNet  Google Scholar 

  44. I. Daubechies, H. Landau, and Z. Landau, Gabor time-frequency lattices and the Wexler-Raz identity, J. Fourier Anal. Appl., 1 (1995), pp. 437–478.

    Article  MATH  MathSciNet  Google Scholar 

  45. B. Deng and C. Heil, Density of Gabor Schauder bases, in: Wavelet Applications in Signal and Image Processing VIII (San Diego, CA, 2000), A. Aldroubi, A. Lane, and M. Unser, eds., Proc. SPIE Vol. 4119, SPIE, Bellingham, WA, 2000, pp. 153–164.

    Google Scholar 

  46. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), pp. 341–366.

    Article  MATH  MathSciNet  Google Scholar 

  47. K. Dykema, D. Freeman, K. Kornelson, D. Larson, M. Ordower, and E. Weber, Ellipsoidal tight frames and projection decomposition of operators, Illinois J. Math., 48 (2004), pp. 477–489.

    MATH  MathSciNet  Google Scholar 

  48. G. Edgar and J. Rosenblatt, Difference equations over locally compact abelian groups, Trans. Amer. Math. Soc., 253 (1979), pp. 273–289.

    Article  MATH  MathSciNet  Google Scholar 

  49. G. B. Folland, Harmonic Analysis on Phase Space, Princeton Univ. Press, Princeton, NJ, 1989.

    Google Scholar 

  50. G. B. Folland and A. Sitaram, The uncertainty principle: A mathematical survey, J. Fourier Anal. Appl., 3 (1997), pp. 207–238.

    Article  MATH  MathSciNet  Google Scholar 

  51. D. Gabor, Theory of communication, J. Inst. Elec. Eng. (London), 93 (1946), pp. 429–457.

    Google Scholar 

  52. J.-P. Gabardo and D. Han, Aspects of Gabor analysis and operator algebras, in: Advances in Gabor Analysis, H. G. Feichtinger and T. Strohmer, eds., Birkhäuser, Boston, 2003, pp. 153–169.

    Google Scholar 

  53. J.-P. Gabardo and D. Han, Balian-Low phenomenon for subspace Gabor frames, J. Math. Phys., 45 (2004), pp. 3362–3378.

    Article  MATH  MathSciNet  Google Scholar 

  54. B. R. Gelbaum, Notes on Banach spaces and bases, An. Acad. Brasil. Ci., 30 (1958), pp. 29–36.

    MathSciNet  Google Scholar 

  55. K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.

    MATH  Google Scholar 

  56. K. Gröchenig, Uncertainty principles for time-frequency representations, in: Advances in Gabor Analysis, H. G. Feichtinger and T. Strohmer, eds., Birkhäuser, Boston, 2003, pp. 11–30.

    Google Scholar 

  57. K. Gröchenig, Localized frames are finite unions of Riesz sequences, Adv. Comput. Math., 18 (2003), pp. 149–157.

    Article  MATH  MathSciNet  Google Scholar 

  58. K. Gröchenig, Localization of frames, Banach frames, and the invertibility of the frame operator, J. Fourier Anal. Appl., 10 (2004), pp. 105–132.

    Article  MATH  MathSciNet  Google Scholar 

  59. K. Gröchenig, D. Han, C. Heil, and G. Kutyniok, The Balian-Low Theorem for symplectic lattices in higher dimensions, Appl. Comput. Harmon. Anal., 13 (2002), pp. 169–176.

    Article  MATH  MathSciNet  Google Scholar 

  60. K. Gröchenig and H. Razafinjatovo, On Landau’s necessary density conditions for sampling and interpolation of band-limited functions, J. London Math. Soc. (2), 54 (1996), pp. 557–565.

    MATH  MathSciNet  Google Scholar 

  61. D. Han and D. R. Larson, Frames, bases and group representations Memoirs Amer. Math. Soc., 147, No. 697 (2000).

    Google Scholar 

  62. E. Hayashi, S. Li, and T. Sorrells, Gabor duality characterizations, Chapter 7, this volume (2006).

    Google Scholar 

  63. C. Heil, Wiener Amalgam Spaces in Generalized Harmonic Analysis and Wavelet Theory, Ph.D. Thesis, University of Maryland, College Park, MD, 1990.

    Google Scholar 

  64. C. Heil, A Basis Theory Primer, manuscript, 1997. Electronic version available at http://www.math.gatech.edu/~heil.

    Google Scholar 

  65. C. Heil, An introduction to weighted Wiener amalgams, in: Wavelets and their Applications (Chennai, January 2002), M. Krishna, R. Radha and S. Thangavelu, eds., Allied Publishers, New Delhi, 2003, pp. 183–216.

    Google Scholar 

  66. C. Heil, Integral operators, pseudodifferential operators, and Gabor frames, in: Advances in Gabor Analysis, H. G. Feichtinger and T. Strohmer, eds., Birkhäuser, Boston, 2003, pp. 153–169.

    Google Scholar 

  67. C. Heil and G. Kutyniok, Density of weighted wavelet frames, J. Geom. Anal., 13 (2003), pp. 479–493.

    MATH  MathSciNet  Google Scholar 

  68. C. Heil and G. Kutyniok, The Homogeneous Approximation Property for wavelet frames, preprint (2005).

    Google Scholar 

  69. C. Heil, J. Ramanathan, and P. Topiwala, Linear independence of time-frequency translates, Proc. Amer. Math. Soc., 124 (1996), pp. 2787–2795.

    Article  MATH  MathSciNet  Google Scholar 

  70. C. Heil, J. Ramanathan, and P. Topiwala, Singular values of compact pseudo-differential operators, J. Funct. Anal., 150 (1996), pp. 426–452.

    Article  MathSciNet  Google Scholar 

  71. C. E. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Review, 31 (1989), pp. 628–666.

    Article  MATH  MathSciNet  Google Scholar 

  72. C. Heil and D. F. Walnut, eds., Fundamental Papers in Wavelet Theory, Princeton University Press, Princeton, NJ, 2006.

    Google Scholar 

  73. E. Hernández, D. Labate, and G. Weiss, A unified characterization of reproducing systems generated by a finite family, II, J. Geom. Anal., 12 (2002), pp. 615–662.

    MATH  MathSciNet  Google Scholar 

  74. E. Hernández and G. Weiss, A First Course on Wavelets, CRC Press, Boca Raton, FL, 1996.

    MATH  Google Scholar 

  75. G. Higman, The units of group-rings, Proc. London Math. Soc. (2), 46 (1940), pp. 231–248.

    Article  MATH  MathSciNet  Google Scholar 

  76. J. R. Holub, Pre-frame operators, Besselian frames, and near-Riesz bases in Hilbert spaces, Proc. Amer. Math. Soc., 122 (1994), pp. 779–785.

    Article  MATH  MathSciNet  Google Scholar 

  77. A. J. E. M. Janssen, Bargmann transform, Zak transform, and coherent states, J. Math. Phys., 23 (1982), pp. 720–731.

    Article  MATH  MathSciNet  Google Scholar 

  78. A. J. E. M. Janssen, The Zak transform: a signal transform for sampled time-continuous signals, Philips J. Res., 43 (1988), pp. 23–69.

    MATH  MathSciNet  Google Scholar 

  79. A. J. E. M. Janssen, Signal analytic proofs of two basic results on lattice expansions, Appl. Comput. Harmon. Anal., 1 (1994), pp. 350–354.

    Article  MATH  MathSciNet  Google Scholar 

  80. A. J. E. M. Janssen, Duality and biorthogonality for Weyl-Heisenberg frames, J. Fourier Anal. Appl., 1 (1995), pp. 403–436.

    Article  MATH  MathSciNet  Google Scholar 

  81. A. J. E. M. Janssen, Representations of Gabor frame operators, in: Twentieth Century Harmonic Analysis—A Celebration (Il Ciocco, 2000), NATO Sci. Ser. II Math. Phys. Chem., 33, Kluwer Acad. Publ., Dordrecht, 2001, pp. 73–101.

    Google Scholar 

  82. A. J. E. M. Janssen, Zak transforms with few zeros and the tie, in: Advances in Gabor Analysis, H. G. Feichtinger and T. Strohmer, eds., Birkhäuser, Boston, 2003, pp. 31–70.

    Google Scholar 

  83. A. J. E. M. Janssen, On generating tight Gabor frames at critical density, J. Fourier Anal. Appl., 9 (2003), pp. 175–214.

    Article  MATH  MathSciNet  Google Scholar 

  84. A. J. E. M. Janssen and T. Strohmer, Hyperbolic secants yield Gabor frames, Appl. Comput. Harmon. Anal., 12 (2002), pp. 259–267.

    Article  MATH  MathSciNet  Google Scholar 

  85. R. Kadison and I. Singer, Extensions of pure states, Amer. J. Math., 81 (1959), pp. 383–400.

    Article  MATH  MathSciNet  Google Scholar 

  86. K. S. Kazarian, F. Soria, and R. E. Zink, On rearranges orthogonal systems as quasibases in weighted Lp spaces, in: Interaction between Functional Analysis, Harmonic Analysis, and Probability (Columbia, MO, 1994), N. Kalton, E. Saab, and S. Montgomery-Smith, eds., Lecture Notes in Pure and Appl. Math. Vol. 175, Dekker, New York, 1996, pp. 239–247

    Google Scholar 

  87. H. O. Kim and J. K. Lim, New characterizations of Riesz bases, Appl. Comput. Harmon. Anal., 4 (1997), pp. 222–229.

    Article  MATH  MathSciNet  Google Scholar 

  88. G. Kutyniok, Linear independence of time-frequency shifts under a generalized Schrödinger representation, Arch. Math. (Basel), 78 (2002), pp. 135–144.

    MATH  MathSciNet  Google Scholar 

  89. G. Kutyniok, Computation of the density of weighted wavelet systems, in: Wavelets: Applications in Signal and Image Processing, M. Unser, A. Aldroubi, and A. Laine eds., SPIE Proc. Vol. 5207, SPIE, San Diego, 2003, pp. 393–404.

    Google Scholar 

  90. D. Labate, A unified characterization of reproducing systems generated by a finite family, J. Geom. Anal., 12 (2002), pp. 469–491.

    MATH  MathSciNet  Google Scholar 

  91. H. Landau, On the density of phase-space expansions, IEEE Trans. Inform. Theory, 39 (1993), pp. 1152–1156.

    Article  MATH  Google Scholar 

  92. S. Li and H. Ogawa, Pseudo-duals of frames with applications, Appl. Comput. Harmon. Anal., 11 (2001), 289–304.

    Article  MATH  MathSciNet  Google Scholar 

  93. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I, Springer-Verlag, New York, 1977.

    MATH  Google Scholar 

  94. P. A. Linnell, Zero divisors and L 2(G), C. R. Acad. Sci. Paris Sér. I Math., 315 (1992), pp. 49–53.

    MATH  MathSciNet  Google Scholar 

  95. P. A. Linnell, Analytic versions of the zero divisor conjecture, in: Geometry and Cohomology in Group Theory, P. H. Kropholler, G. A. Niblo, and R. StÖhr, eds., London Math. Soc. Lecture Note Series, Cambridge University Press, Cambridge, 1998, pp. 209–248.

    Google Scholar 

  96. P. A. Linnell, Von Neumann algebras and linear independence of translates, Proc. Amer. Math. Soc., 127 (1999), pp. 3269–3277.

    Article  MATH  MathSciNet  Google Scholar 

  97. F. Low, Complete sets of wave packets, in: A Passion for Physics—Essays in Honor of Geoffrey Chew, C. DeTar, J. Finkelstein, and C. I. Tan, eds., World Scientific, Singapore, 1985, pp. 17–22.

    Google Scholar 

  98. J. Marti, Introduction to the Theory of Bases, Springer-Verlag, New York, 1969.

    MATH  Google Scholar 

  99. A. Olevskii, Completeness in L 2(R) of almost integer translates, C. R. Acad. Sci. Paris, 324 (1997), pp. 987–991.

    MATH  MathSciNet  Google Scholar 

  100. A. Olevskii and A. Ulanovskii, Almost integer translates. Do nice generators exist?, J. Fourier Anal. Appl., 10 (2004), pp. 93–104.

    Article  MATH  MathSciNet  Google Scholar 

  101. T. E. Olson and R. A. Zalik, Nonexistence of a Riesz basis of translates, in: Approximation Theory, Lecture Notes in Pure and Applied Math., Vol. 138, Dekker, New York, 1992, pp. 401–408.

    Google Scholar 

  102. A. M. Perelomov, On the completeness of a system of coherent states (English translation), Theoret. Math. Phys., 6 (1971), pp. 156–164.

    Article  MathSciNet  Google Scholar 

  103. J. Ramanathan and T. Steger, Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal., 2 (1995), pp. 148–153.

    Article  MATH  MathSciNet  Google Scholar 

  104. M. Rieffel, Von Neumann algebras associated with pairs of lattices in Lie groups, Math. Ann., 257 (1981), pp. 403–418.

    Article  MATH  MathSciNet  Google Scholar 

  105. J. Rosenblatt, Linear independence of translations, J. Austral. Math. Soc. (Series A), 59 (1995), pp. 131–133.

    MATH  MathSciNet  Google Scholar 

  106. Z. Rzeszotnik, private communication, 2004.

    Google Scholar 

  107. K. Seip, On the connection between exponential bases and certain related sequences in L 2(−π; π), J. Funct. Anal., 130 (1995), pp. 131–160.

    Article  MATH  MathSciNet  Google Scholar 

  108. I. Singer, Bases in Banach Spaces I, Springer-Verlag, New York, 1970.

    MATH  Google Scholar 

  109. T. Strohmer and R. W. Heath, Jr., Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal., 14 (2003), pp. 257–275.

    Article  MATH  MathSciNet  Google Scholar 

  110. W. Sun and X. Zhou, Density and stability of wavelet frames, Appl. Comput. Harmon. Anal., 15 (2003), pp. 117–133.

    Article  MATH  MathSciNet  Google Scholar 

  111. D. F. Walnut, An Introduction to Wavelet Analysis, Birkhäuser, Boston, 2002.

    MATH  Google Scholar 

  112. P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.

    MATH  Google Scholar 

  113. Y. Wang, Sparse complete Gabor systems on a lattice, Appl. Comput. Harmon. Anal., 16 (2004), pp. 60–67.

    Article  MATH  MathSciNet  Google Scholar 

  114. R. Young, An Introduction to Nonharmonic Fourier Series, Revised First Edition, Academic Press, San Diego, 2001.

    MATH  Google Scholar 

  115. R. A. Zalik, On approximation by shifts and a theorem of Wiener, Trans. Amer. Math. Soc., 243 (1978), pp. 299–308.

    Article  MATH  MathSciNet  Google Scholar 

  116. R. A. Zalik, On fundamental sequences of translates, Proc. Amer. Math. Soc., 79 (1980), pp. 255–259.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Heil, C. (2006). Linear Independence of Finite Gabor Systems. In: Heil, C. (eds) Harmonic Analysis and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4504-7_9

Download citation

Publish with us

Policies and ethics