Skip to main content

Shimura Curves for Level-3 Subgroups of the (2,3,7) Triangle Group, and Some Other Examples

  • Conference paper
Book cover Algorithmic Number Theory (ANTS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 4076))

Included in the following conference series:

Abstract

The (2,3,7) triangle group is known to be associated with a quaternion algebra A/K ramified at two of the three real places of K=Q(cos2π/7) and unramified at all other places of K. This triangle group and its congruence subgroups thus give rise to various Shimura curves and maps between them. We study the genus-1 curves \({{\cal X}_0}(3)\), \({{\cal X}_1}(3)\) associated with the congruence subgroups Γ0(3), Γ1(3). Since the rational prime 3 is inert in K, the covering \({{\cal X}_0}(3)/{{\cal X}(1)}\) has degree 28, and its Galois closure \({\cal X}(3)/{{\cal X}(1)}\) has geometric Galois group PSL2(F 27). Since \({{\cal X}(1)}\) is rational, the covering \({{\cal X}_0}(3)/{{\cal X}(1)}\) amounts to a rational map of degree 28. We compute this rational map explicitly. We find that \({{\cal X}_0}(3)\) is an elliptic curve of conductor 147=372 over Q, as is the Jacobian \({{\cal J}_1}(3)\) of \({{\cal X}_1}(3)\); that these curves are related by an isogeny of degree 13; and that the kernel of the 13-isogeny from \({{\cal J}_1}(3)\) to \({{\cal X}_0}(3)\) consists of K-rational points. We also use the map \({{\cal X}_0}(3) \rightarrow {{{\cal X}}(1)}\) to locate some complex multiplication (CM) points on \({{\cal X}(1)}\). We conclude by describing analogous behavior of a few Shimura curves associated with quaternion algebras over other cyclic cubic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves, vol. I. Springer, New York (1985)

    MATH  Google Scholar 

  2. Beckmann, S.: Ramified primes in the field of moduli of branched coverings of curves. J. of Algebra 125, 236–255 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Belyi, G.V.: On the Galois extensions of the maximal cyclotomic field. Izv. Akad. Nauk SSSR 43, 267–276 (1979); Math. USSR Izv. 14, 247–256 (1980); See also: A new proof of the three-point theorem. Mat. Sb. 193(3), 21–24 (2002); Sb. Math. 193(3–4), 329–332 (2002)

    Google Scholar 

  4. Birch, B.J., Kuyk, W. (eds.): Modular Functions of One Variable IV. Lect. Notes in Math., vol. 476 (1975)

    Google Scholar 

  5. Carayol, H.: Sur la mauvaise réduction des courbes de Shimura. Compositio. Math. 59(2), 151–230 (1986)

    MATH  MathSciNet  Google Scholar 

  6. Cremona, J.E.: Algorithms for modular elliptic curves. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  7. Doi, K., Naganuma, H.: On the algebraic curves uniformized by arithmetical automorphic functions. Annals of Math. 86(2), 449–460 (1967)

    Article  MathSciNet  Google Scholar 

  8. Elkies, N.D.: Explicit modular towers. In: Başar, T., Vardy, A. (eds.) Proceedings of the Thirty-Fifth [1997] Annual Allerton Conference on Communication, Control and Computing, pp. 23–32. Univ. of Illinois at Urbana-Champaign (1998), http://arXiv.org/abs/math.NT/0103107

  9. Elkies, N.D.: Shimura Curve Computations. In: Buhler, J. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 1–47. Springer, Heidelberg (1998), http://arXiv.org/abs/math.NT/0005160

    Chapter  Google Scholar 

  10. Elkies, N.D.: The Klein quartic in number theory. In: Levy, S. (ed.) The Eightfold Way: The Beauty of Klein’s Quartic Curve, pp. 51–102. Cambridge Univ. Press, Cambridge (1999), Online at: http://www.msri.org/publications/books/Book35/

    Google Scholar 

  11. Fricke, R.: Über den arithmetischen Charakter der zu den Verzweigungen (2,3,7) und (2,4,7) gehörenden Dreiecksfunctionen. Math. Ann. 41, 443–468 (1893)

    Article  MathSciNet  Google Scholar 

  12. Fricke, R.: Entwicklungen zur Transformation fünfter und siebenter Ordnung einiger specieller automorpher Functionen. Acta Math. 17, 345–395 (1893)

    Article  MathSciNet  Google Scholar 

  13. Fricke, R.: Ueber eine einfache Gruppe von 504 Operationen. Math. Ann. 52, 321–339 (1899)

    Article  MATH  MathSciNet  Google Scholar 

  14. González, J., Rotger, V.: Equations of Shimura curves of genus 2. International Math. Research Letters (to appear), http://arXiv.org/abs/math.NT/0312434

  15. Hurwitz, A.: Über algebraische Gebilde mit eindeutigen Transformationen in sich. Math. Annalen 41, 403–442 (1893)

    Article  MathSciNet  Google Scholar 

  16. Kurihara, A.: On some examples of equations defining Shimura curves and the Mumford uniformization. J. Fac. Sci. Univ. Tkyo, Sec. IA 25, 277–301 (1979)

    MathSciNet  Google Scholar 

  17. Macbeath, A.M.: On a curve of genus 7. Proc. LMS 15, 527–542 (1965)

    MATH  MathSciNet  Google Scholar 

  18. Mumford, D.: Abelian Varieties. Oxford Univ. Press, London (1970)

    MATH  Google Scholar 

  19. PARI/GP, versions 2.1.1–4, Bordeaux, 2000–4, http://pari.math.u-bordeaux.fr

  20. Serre, J.-P.: Topics in Galois Theory. Jones and Bartlett, Boston (1992)

    MATH  Google Scholar 

  21. Shimura, G.: Construction of class fields and zeta functions of algebraic curves. Ann. of Math. 85, 58–159 (1967)

    Article  MathSciNet  Google Scholar 

  22. Shimizu, H.: On zeta functions of quaternion algebras. Ann. of Math. 81, 166–193 (1965)

    Article  MathSciNet  Google Scholar 

  23. Stevens, G.: Stickelberger elements and modular parametrizations of elliptic curves. Invent. Math. 98(1), 75–106 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Streit, M.: Field of definition and Galois orbits for the Macbeath-Hurwitz curves. Arch. Math. 74(5), 342–349 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Takeuchi, K.: Commensurability classes of arithmetic triangle groups. J. Fac. Sci. Univ. Tokyo 24, 201–212 (1977)

    MATH  Google Scholar 

  26. Vatsal, V.: Multiplicative subgroups of J 0(N) and applications to elliptic curves. J. Inst. Math. Jussieu 4(2), 281–316 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Vignéras, M.-F.: Arithmétique des Algèbres de Quaternions. SLN, vol. 800. Springer, Berlin (1980)

    MATH  Google Scholar 

  28. Watkins, M.: e-mail communication (2003–2005)

    Google Scholar 

  29. Wolfart, J.: Belyi Surfaces with Many Automorphisms. In: Schneps, L., Lochak, P. (eds.) Geometric Galois Actions, 1. Around Grothendieck’s Esquisse d’un Programme. London Math. Soc. Lect. Note Series, vol. 242, pp. 97–112. Cambridge University Press, Cambridge (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elkies, N.D. (2006). Shimura Curves for Level-3 Subgroups of the (2,3,7) Triangle Group, and Some Other Examples. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_22

Download citation

  • DOI: https://doi.org/10.1007/11792086_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36075-9

  • Online ISBN: 978-3-540-36076-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics