Skip to main content

Algebraic K-Theory of Rings of Integers in Local and Global Fields

  • Reference work entry
Handbook of K-Theory

Abstract

This survey describes the algebraic K-groups of local and global fields, and the K-groups of rings of integers in these fields. We have used the result of Rost and Voevodsky to determine the odd torsion in these groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grzegorz Banaszak, Algebraic K -theory of number fields and rings of integers and the Stickelberger ideal, Ann. of Math. (2) 135 (1992), no. 2, 325–360. MR 93m:11121

    Article  MathSciNet  Google Scholar 

  2. Grzegorz Banaszak and Wojciech Gajda, Euler systems for higher K -theory of number fields, J. Number Theory 58 (1996), no. 2, 213–252. MR 97g:11135

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Bass, J. Milnor, and J.-P. Serre, Solution of the congruence subgroup problem for SLn (n 3) and Sp2n (n 2), Inst. Hautes Études Sci. Publ. Math. (1967), no. 33, 59–137. MR 39 #5574

    Google Scholar 

  4. H. Bass and J. Tate, The Milnor ring of a global field, Algebraic K-theory, II: “Classical” algebraic K-theory and connections with arithmetic (Proc. Conf., Seattle, Wash., Battelle Memorial Inst., 1972), Springer-Verlag, Berlin, 1973, pp. 349–446. Lecture Notes in Math., vol. 342. MR 56 #449

    Google Scholar 

  5. A Beilinson, Letter to Soulé, Not published, Jan. 11, 1996

    Google Scholar 

  6. M. Bökstedt and I. Madsen, Algebraic K -theory of local number fields: the unramified case, Prospects in topology (Princeton, NJ, 1994), Ann. of Math. Stud., vol. 138, Princeton Univ. Press, Princeton, NJ, 1995, pp. 28–57. MR 97e:19004

    Google Scholar 

  7. Armand Borel, Cohomologie réelle stable de groupes S -arithmétiques classiques, C. R. Acad. Sci. Paris Sér. A–B 274 (1972), A1700–A1702. MR 46 #7400

    MathSciNet  Google Scholar 

  8. J. Browkin and A. Schinzel, On Sylow 2-subgroups of K2OF for quadratic number fields F, J. Reine Angew. Math. 331 (1982), 104–113. MR 83g:12011

    MATH  MathSciNet  Google Scholar 

  9. Joe Buhler, Richard Crandall, Reijo Ernvall, Tauno Mets¨ankyl¨a, and M. Amin Shokrollahi, Irregular primes and cyclotomic invariants to 12 million, J. Symbolic Comput. 31 (2001), no. 1–2, 89–96, Computational algebra and number theory (Milwaukee, WI, 1996). MR 2001m:11220

    Google Scholar 

  10. Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 94i:11105

    MATH  Google Scholar 

  11. W. G. Dwyer, E. M. Friedlander, and S. A. Mitchell, The generalized Burnside ring and the K -theory of a ring with roots of unity, K-Theory 6 (1992), no. 4, 285–300. MR 93m:19010

    Article  MATH  MathSciNet  Google Scholar 

  12. W. G. Dwyer and S. A. Mitchell, On the K -theory spectrum of a smooth curve over a finite field, Topology 36 (1997), no. 4, 899–929. MR 98g:19006

    Article  MATH  MathSciNet  Google Scholar 

  13. W. G. Dwyer and S. A. Mitchell, On the K -theory spectrum of a ring of algebraic integers, K-Theory 14 (1998), no. 3, 201–263. MR 99i:19003

    Article  MATH  MathSciNet  Google Scholar 

  14. William G. Dwyer and Eric M. Friedlander, Algebraic and etale K -theory, Trans. Amer. Math. Soc. 292 (1985), no. 1, 247–280. MR 87h:18013

    Article  MATH  MathSciNet  Google Scholar 

  15. Philippe Elbaz-Vincent, Herbert Gangl, and Christophe Soulé, Quelques calculs de la cohomologie de GLN(Z) et de la K -théorie de Z, C. R. Math. Acad. Sci. Paris 335 (2002), no. 4, 321–324. MR 2003h:19002

    MATH  MathSciNet  Google Scholar 

  16. Eric M. Friedlander and Andrei Suslin, The spectral sequence relating algebraic K -theory to motivic cohomology, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 6, 773–875. MR 2004b:19006

    MATH  MathSciNet  Google Scholar 

  17. Ofer Gabber, K -theory of Henselian local rings and Henselian pairs, Algebraic K-theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989), Contemp. Math., vol. 126, Amer. Math. Soc., Providence, RI, 1992, pp. 59–70. MR 93c:19005

    Google Scholar 

  18. Howard Garland, A finiteness theorem for K2 of a number field, Ann. of Math. (2) 94 (1971), 534–548. MR 45 #6785

    Article  MathSciNet  Google Scholar 

  19. Thomas Geisser and Marc Levine, The K -theory of fields in characteristic p, Invent. Math. 139 (2000), no. 3, 459–493. MR 2001f:19002

    Article  MATH  MathSciNet  Google Scholar 

  20. Daniel R. Grayson, Finite generation of K -groups of a curve over a finite field (after Daniel Quillen), Algebraic K-theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., vol. 966, Springer-Verlag, Berlin, 1982, pp. 69–90. MR 84f:14018

    Google Scholar 

  21. Hinda Hamraoui, Un facteur direct canonique de la K -théorie d’anneaux d’entiers algébriques non exceptionnels, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 11, 957–962. MR 2002e:19006

    MATH  MathSciNet  Google Scholar 

  22. G. Harder, Die Kohomologie S -arithmetischer Gruppen über Funktionenkörpern, Invent. Math. 42 (1977), 135–175. MR 57 #12780

    Article  MATH  MathSciNet  Google Scholar 

  23. B. Harris and G. Segal, Ki groups of rings of algebraic integers, Ann. of Math. (2) 101 (1975), 20–33. MR 52 #8222

    Article  MathSciNet  Google Scholar 

  24. Robin Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, no. 52. MR 57 #3116

    MATH  Google Scholar 

  25. Lars Hesselholt and Ib Madsen, On the K -theory of local fields, Ann. of Math. (2) 158 (2003), no. 1, 1–113. MR 1 998 478

    Article  MATH  MathSciNet  Google Scholar 

  26. Bruno Kahn, Deux théorèmes de comparaison en cohomologie étale: applications, Duke Math. J. 69 (1993), no. 1, 137–165. MR 94g:14009

    Article  MATH  MathSciNet  Google Scholar 

  27. Bruno Kahn, On the Lichtenbaum-Quillen conjecture, Algebraic K-theory and algebraic topology (Lake Louise, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 407, Kluwer Acad. Publ., Dordrecht, 1993, pp. 147–166. MR 97c:19005

    Google Scholar 

  28. Bruno Kahn, K -theory of semi-local rings with finite coefficients and étale cohomology, K-Theory 25 (2002), no. 2, 99–138. MR 2003d:19003

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Kolster, T. Nguyen Quang Do, and V. Fleckinger, Correction to: “Twisted S -units, p -adic class number formulas, and the Lichtenbaum conjectures” [Duke Math. J. 84 (1996), no. 3, 679–717; MR 97g:11136], Duke Math. J. 90 (1997), no. 3, 641–643. MR 98k:11172

    Google Scholar 

  30. Ernst Eduard Kummer, Collected papers, Springer-Verlag, Berlin, 1975, Volume II: Function theory, geometry and miscellaneous, Edited and with a foreward by André Weil. MR 57 #5650b

    Google Scholar 

  31. Masato Kurihara, Some remarks on conjectures about cyclotomic fields and K -groups of Z, Compositio Math. 81 (1992), no. 2, 223–236. MR 93a:11091

    MATH  MathSciNet  Google Scholar 

  32. Marc Levine, Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom. 10 (2001), no. 2, 299–363. MR 2001m:14014

    MATH  MathSciNet  Google Scholar 

  33. Stephen Lichtenbaum, On the values of zeta and L -functions. I, Ann. of Math. (2) 96 (1972), 338–360. MR 50 #12975

    Article  MathSciNet  Google Scholar 

  34. Stephen Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic K -theory, Algebraic K-theory, II: “Classical” algebraic K-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer-Verlag, Berlin, 1973, pp. 489–501. Lecture Notes in Math., vol. 342. MR 53 #10765

    Google Scholar 

  35. Stephen Lichtenbaum, Values of zeta-functions at nonnegative integers, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), Lecture Notes in Math., vol. 1068, Springer-Verlag, Berlin, 1984, pp. 127–138. MR 756 089

    Google Scholar 

  36. B. Mazur and A. Wiles, Class fields of abelian extensions of Q, Invent. Math. 76 (1984), no. 2, 179–330. MR 85m:11069

    Article  MATH  MathSciNet  Google Scholar 

  37. A. S. Merkurjev, On the torsion in K2 of local fields, Ann. of Math. (2) 118 (1983), no. 2, 375–381. MR 85c:11121

    Article  MathSciNet  Google Scholar 

  38. A. S. Merkurjev and A. A. Suslin, The group K3 for a field, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 3, 522–545. MR 91g:19002

    MathSciNet  Google Scholar 

  39. James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 81j:14002

    MATH  Google Scholar 

  40. John Milnor, Introduction to algebraic K -theory, Princeton University Press, Princeton, N.J., 1971, Annals of Mathematics Studies, no. 72. MR 50 #2304

    MATH  Google Scholar 

  41. John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J., 1974, Annals of Mathematics Studies, no. 76. MR 55 #13428

    MATH  Google Scholar 

  42. Stephen A. Mitchell, K (1)-local homotopy theory, Iwasawa theory, and algebraic K -theory, The K-theory Handbook, Springer-Verlag, Berlin, 2005

    Google Scholar 

  43. Stephen A. Mitchell, On the Lichtenbaum-Quillen conjectures from a stable homotopytheoretic viewpoint, Algebraic topology and its applications, Math. Sci. Res. Inst. Publ., vol. 27, Springer-Verlag, New York, 1994, pp. 163–240. MR 1 268 191

    Google Scholar 

  44. Stephen A. Mitchell,Hypercohomology spectra and Thomason’s descent theorem, Algebraic K-theory (Toronto, ON, 1996), Fields Inst. Commun., vol. 16, Amer. Math. Soc., Providence, RI, 1997, pp. 221–277. MR 99f:19002

    Google Scholar 

  45. Jürgen Neukirch, Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999, Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder. MR 2000m:11104

    MATH  Google Scholar 

  46. I. Panin, On a theorem of Hurewicz and K -theory of complete discrete valuation rings, Math. USSR Izvestiya 96 (1972), 552–586

    Google Scholar 

  47. Daniel Quillen, On the cohomology and K -theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586. MR 47 #3565

    Article  MathSciNet  Google Scholar 

  48. Daniel Quillen , Finite generation of the groups Ki of rings of algebraic integers, Lecture Notes in Math., vol. 341, Springer-Verlag, 1973, pp. 179–198

    Google Scholar 

  49. Daniel Quillen , Higher algebraic K -theory.I,AlgebraicK-theory,I:HigherK-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer-Verlag, Berlin, 1973, pp. 85–147. Lecture Notes in Math., vol. 341. MR 49 #2895

    Google Scholar 

  50. Daniel Quillen , Letter from Quillen to Milnor on Im(π i0 πs i Ki Z), Algebraic K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), Springer-Verlag, Berlin, 1976, pp. 182–188. Lecture Notes in Math., vol. 551. MR 58 #2811

    Google Scholar 

  51. J. Rognes and C. Weibel, Two-primary algebraic K -theory of rings of integers in number fields, J. Amer. Math. Soc. 13 (2000), no. 1, 1–54, Appendix A by Manfred Kolster. MR 2000g:19001

    Article  MATH  MathSciNet  Google Scholar 

  52. John Rognes, Algebraic K -theory of the two-adic integers, J. Pure Appl. Algebra 134 (1999), no. 3, 287–326. MR 2000e:19004

    Article  MATH  MathSciNet  Google Scholar 

  53. John Rognes, K4(Z) is the trivial group, Topology 39 (2000), no. 2, 267–281. MR 2000i:19009

    Article  MATH  MathSciNet  Google Scholar 

  54. John Rognes and Paul Arne Østvær, Two-primary algebraic K -theory of tworegular number fields, Math. Z. 233 (2000), no. 2, 251–263. MR 2000k:11131

    Article  MATH  MathSciNet  Google Scholar 

  55. Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York, 1979, Translated from the French by Marvin Jay Greenberg. MR 82e:12016

    MATH  Google Scholar 

  56. N. J. A. Sloane, ed. On-Line Encyclopedia of Integer Sequences, 2003, published electronically at http://www.research.att.com/˜njas/sequences

    Google Scholar 

  57. C. Soulé, Addendum to the article: “On the torsion in K (Z)” (Duke Math. J. 45 (1978), no. 1, 101–129) by R. Lee and R. H. Szczarba, Duke Math. J. 45 (1978), no. 1, 131–132. MR 58 #11074b

    Google Scholar 

  58. C. Soulé, K -théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), no. 3, 251–295. MR 81i:12016

    Article  MATH  MathSciNet  Google Scholar 

  59. C. Soulé, Operations on étale K -theory. Applications, Algebraic K-theory, Part I (Oberwolfach, 1980), Lecture Notes in Math., vol. 966, Springer-Verlag, Berlin, 1982, pp. 271–303. MR 85b:18011

    Google Scholar 

  60. Andrei A. Suslin, On the K -theory of algebraically closed fields, Invent. Math. 73 (1983), no. 2, 241–245. MR 85h:18008a

    Article  MATH  MathSciNet  Google Scholar 

  61. Andrei A. Suslin, Homology of GLn , characteristic classes and Milnor K -theory, Algebraic K-theory, number theory, geometry and analysis (Bielefeld, 1982), Lecture Notes in Math., vol. 1046, Springer-Verlag, Berlin, 1984, pp. 357–375. MR 86f:11090a

    Google Scholar 

  62. Andrei A. Suslin, Algebraic K -theory of fields, Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Berkeley, Calif., 1986) (Providence, RI), Amer. Math. Soc., 1987, pp. 222–244. MR 89k:12010

    Google Scholar 

  63. Andrei A. Suslin, Higher Chow groups and etale cohomology, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 239–254. MR 1 764 203

    Google Scholar 

  64. John Tate, Symbols in arithmetic, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, pp. 201–211. MR 54 #10204

    Google Scholar 

  65. John Tate, Relations between K2 and Galoiscohomology, Invent. Math. 36 (1976), 257–274. MR 55 #2847

    Article  MATH  MathSciNet  Google Scholar 

  66. John Tate, On the torsion in K2 of fields, Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976), Japan Soc. Promotion Sci., Tokyo, 1977, pp. 243–261. MR 57 #3104

    Google Scholar 

  67. R. W. Thomason, Algebraic K -theory and étale cohomology, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 3, 437–552. MR 87k:14016

    MATH  MathSciNet  Google Scholar 

  68. Vladimir Voevodsky, On motivic cohomology with Z| -coefficients, Preprint, June 16, 2003, K-theory Preprint Archives, http://www.math.uiuc.edu/K-theory/0639/

    Google Scholar 

  69. Vladimir Voevodsky, Motivic cohomology with Z |2-coefficients, Publ. Math. Inst. Hautes Études Sci. (2003), no. 98, 59–104. MR 2 031 199

    Google Scholar 

  70. J. B. Wagoner, Continuous cohomology and p -adic K -theory, Algebraic K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), Springer-Verlag, Berlin, 1976, pp. 241–248. Lecture Notes in Math., vol. 551. MR 58 #16609

    Google Scholar 

  71. Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 85g:11001

    MATH  Google Scholar 

  72. Charles Weibel, Algebraic K -theory, http://math.rutgers.edu/~weibel/

    Google Scholar 

  73. Charles Weibel, Higher wild kernels and divisibility in the K -theory of number fields, Preprint, July 15, 2004, K-theory Preprint Archives, http://www.math.uiuc.edu/K-theory/699

    Google Scholar 

  74. Charles Weibel, Étale Chern classes at the prime 2, Algebraic K-theory and algebraic topology (Lake Louise, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 407, Kluwer Acad. Publ., Dordrecht, 1993, pp. 249–286. MR 96m: 19013

    Google Scholar 

  75. Charles Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 95f:18001

    MATH  Google Scholar 

  76. Charles Weibel, The 2-torsion in the K -theory of the integers, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 6, 615–620. MR 98h:19001

    MATH  MathSciNet  Google Scholar 

  77. A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493–540. MR 91i:11163

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Weibel, C. (2005). Algebraic K-Theory of Rings of Integers in Local and Global Fields. In: Friedlander, E., Grayson, D. (eds) Handbook of K-Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27855-9_5

Download citation

Publish with us

Policies and ethics