Skip to main content

The Asymptotic Distribution of Quadratic Discrepancies

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2004

Summary

In Numerical Analysis, several discrepancies have been introduced to test that a sample of n points in the unit hypercube [0, 1]d comes from a uniform distribution. An outstanding example is given by Hickernell’s generalized \(\mathcal{L}^P \)-discrepancies, that constitute a generalization of the Kolmogorov-Smirnov and the Cramér-von Mises statistics. These discrepancies can be used in numerical integration by Monte Carlo and quasi-Monte Carlo methods, design of experiments, uniformity and goodness of fit tests. In this paper, after having recalled some necessary asymptotic results derived in companion papers, we show that the case of \(\mathcal{L}^2 \)-discrepancies is more convenient to handle and we provide a new computational approximation of their asymptotic distribution. As an illustration, we show that our algorithm is able to recover the tabulated asymptotic distribution of the Cramér-von Mises statistic. The results so obtained are very general and can be applied with minor modifications to other discrepancies, such as the diaphony, the weighted spectral test, the Fourier discrepancy and the class of chi-square tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.W. Anderson and D.A. Darling. Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. Ann. Math. Statistics, 23:193–212, 1952.

    MathSciNet  Google Scholar 

  2. R.H. Brown. The distribution function of positive definite quadratic forms in normal random variables. SIAM J. Sci. Statist. Comput., 7(2):689–695, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Choirat and R. Seri. Statistical properties of generalized discrepancies. Working paper, 2004.

    Google Scholar 

  4. C. Choirat and R. Seri. Statistical properties of quadratic discrepancies. Working paper, 2004.

    Google Scholar 

  5. R.R. Coveyou. Review MR0351035 of MathSciNet, 1975.

    Google Scholar 

  6. S. Csörgő and J.J. Faraway. The exact and asymptotic distributions of Cramérvon Mises statistics. J. Roy. Statist. Soc. Ser. B, 58(1):221–234, 1996.

    MathSciNet  Google Scholar 

  7. R.B. Davies. Numerical inversion of a characteristic function. Biometrika, 60:415–417, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  8. R.B. Davies. Statistical algorithms: Algorithm AS 155: The distribution of a linear combination of ϰ2 random variables. Applied Statistics, 29(3):323–333, 1980.

    MATH  Google Scholar 

  9. K. Frank and S. Heinrich. Computing discrepancies of Smolyak quadrature rules. J. Complexity, 12(4):287–314, 1996. Special issue for the Foundations of Computational Mathematics Conference (Rio de Janeiro, 1997).

    Article  MathSciNet  Google Scholar 

  10. J. Gil-Pelaez. Note on the inversion theorem. Biometrika, 38:481–482, 1951.

    Article  MATH  MathSciNet  Google Scholar 

  11. P.J. Grabner, P. Liardet, and R.F. Tichy. Average case analysis of numerical integration. In Advances in Multivariate Approximation (Witten-Bommerholz, 1998), volume 107 of Math. Res., pages 185–200. Wiley-VCH, Berlin, 1999.

    Google Scholar 

  12. P.J. Grabner, O. Strauch, and R.F. Tichy. Lp-discrepancy and statistical independence of sequences. Czechoslovak Math. J., 49(124)(1):97–110, 1999.

    Article  MathSciNet  Google Scholar 

  13. V.S. Grozdanov and S.S. Stoilova. The b-adic diaphony. Rend. Mat. Appl. (7), 22:203–221 (2003), 2002.

    MathSciNet  Google Scholar 

  14. P. Hellekalek and H. Niederreiter. The weighted spectral test: diaphony. ACM Trans. Model. Comput. Simul., 8(1):43–60, 1998.

    Article  Google Scholar 

  15. P. Hellekalek. Dyadic diaphony. Acta Arith., 80(2):187–196, 1997.

    MATH  MathSciNet  Google Scholar 

  16. P. Hellekalek. On correlation analysis of pseudorandom numbers. In Monte Carlo and Quasi-Monte Carlo Methods 1996 (Salzburg), volume 127 of Lecture Notes in Statist., pages 251–265. Springer, New York, 1998.

    Google Scholar 

  17. P. Hellekalek. On the assessment of random and quasi-random point sets. In Random and Quasi-Random Point Sets, volume 138 of Lecture Notes in Statist., pages 49–108. Springer, New York, 1998.

    Google Scholar 

  18. F.J. Hickernell. Erratum: “Quadrature error bounds with applications to lattice rules” [SIAM J. Numer. Anal. 33 (1996), no. 5, 1995–2016;]. SIAM J. Numer. Anal., 34(2):853–866, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  19. F.J. Hickernell. Quadrature error bounds with applications to lattice rules. SIAM J. Numer. Anal., 33(5):1995–2016, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  20. F.J. Hickernell. A generalized discrepancy and quadrature error bound. Math. Comp., 67(221):299–322, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  21. F.J. Hickernell. Lattice rules: how well do they measure up? In Random and Quasi-Random Point Sets, volume 138 of Lecture Notes in Statist., pages 109–166. Springer, New York, 1998.

    Google Scholar 

  22. F.J. Hickernell. Goodness-of-fit statistics, discrepancies and robust designs. Statist. Probab. Lett., 44(1):73–78, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  23. F.J. Hickernell. The mean square discrepancy of randomized nets. ACM Trans. Model. Comput. Simul., 6(4):274–296, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  24. F.J. Hickernell. What affects the accuracy of quasi-Monte Carlo quadrature? In Monte Carlo and Quasi-Monte Carlo Methods 1998 (Claremont, CA), pages 16–55. Springer, Berlin, 2000.

    Google Scholar 

  25. J. Hoogland, F. James, and R. Kleiss. Quasi-Monte Carlo, discrepancies and error estimates. In Monte Carlo and Quasi-Monte Carlo Methods 1996 (Salzburg), volume 127 of Lecture Notes in Statist., pages 266–276. Springer, New York, 1998.

    Google Scholar 

  26. J. Hoogland and R. Kleiss. Discrepancy-based error estimates for quasi-monte carlo. I: General formalism. Comput. Phys. Comm., 98(1–2):111–127, 1996.

    Article  Google Scholar 

  27. J. Hoogland and R. Kleiss. Discrepancy-based error estimates for quasi-monte carlo. II: Results in one dimension. Comput. Phys. Comm., 98(1–2):128–136, 1996.

    Article  Google Scholar 

  28. J. Hoogland and R. Kleiss. Discrepancy-based error estimates for quasi-monte carlo. III: Error distribution and central limits. Comput. Phys. Comm., 101(1–2):21–30, 1997.

    Article  MathSciNet  Google Scholar 

  29. J.P. Imhof. Computing the distribution of quadratic forms in normal variables. Biometrika, 48:419–426, 1961.

    Article  MATH  MathSciNet  Google Scholar 

  30. F. James, J. Hoogland, and R. Kleiss. Multidimensional sampling for simulation and integration: Measures, discrepancies and quasi-random numbers. Comput. Phys. Comm., 99(2–3):180–220, 1997.

    Article  Google Scholar 

  31. V. Koltchinskii and E. Giné. Random matrix approximation of spectra of integral operators. Bernoulli, 6(1):113–167, 2000.

    Article  MathSciNet  Google Scholar 

  32. P. L’Ecuyer and P. Hellekalek. Random number generators: selection criteria and testing. In Random and Quasi-Random Point Sets, volume 138 of Lecture Notes in Statist., pages 223–265. Springer, New York, 1998.

    Google Scholar 

  33. H. Leeb. Asymptotic properties of the spectral test, diaphony, and related quantities. Math. Comp., 71(237):297–309, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  34. V.F. Lev. On two versions of L2-discrepancy and geometrical interpretation of diaphony. Acta Math. Hungar., 69(4):281–300, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  35. J.-J. Liang, K.-T. Fang, F.J. Hickernell, and R. Li. Testing multivariate uniformity and its applications. Math. Comp., 70(233):337–355, 2001.

    Article  MathSciNet  Google Scholar 

  36. W.J. Morokoff and R.E. Caflisch. Quasi-random sequences and their discrepancies. SIAM J. Sci. Comput., 15(6):1251–1279, 1994.

    Article  MathSciNet  Google Scholar 

  37. G. Pagès and Y.-J. Xiao. Sequences with low discrepancy and pseudo-random numbers: theoretical results and numerical tests. J. Statist. Comput. Simulation, 56(2):163–188, 1997.

    MathSciNet  Google Scholar 

  38. S.H. Paskov. Average case complexity of multivariate integration for smooth functions. J. Complexity, 9(2):291–312, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  39. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2004. ISBN 3-900051-00-3.

    Google Scholar 

  40. S.O. Rice. Distribution of quadratic forms in normal random variables-evaluation by numerical integration. SIAM J. Sci. Statist. Comput., 1(4):438–448, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  41. J. Sheil and I. O’Muircheartaigh. Statistical algorithms: Algorithm AS 106: The distribution of non-negative quadratic forms in normal variables. Applied Statistics, 26(1):92–98, 1977.

    Google Scholar 

  42. O. Strauch. L2 discrepancy. Math. Slovaca, 44(5):601–632, 1994. Number theory (Račkova dolina, 1993).

    MATH  MathSciNet  Google Scholar 

  43. A. van Hameren, R. Kleiss, and J. Hoogland. Gaussian limits for discrepancies. I. Asymptotic results. Comput. Phys. Comm., 107(1–3):1–20, 1997.

    MathSciNet  Google Scholar 

  44. T.T. Warnock. Computational investigations of low-discrepancy point sets. In Applications of Number Theory to Numerical Analysis (Proc. Sympos., Univ. Montreal, Montreal, Que., 1971), pages 319–343. Academic Press, New York, 1972.

    Google Scholar 

  45. G.S. Watson. Goodness-of-fit tests on a circle. Biometrika, 48:109–114, 1961.

    Article  MATH  MathSciNet  Google Scholar 

  46. G.S. Watson. Another test for the uniformity of a circular distribution. Biometrika, 54:675–677, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  47. P. Zinterhof. Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden. Österreich. Akad. Wiss. Math.-Naturwiss. Kl. S.-B. II, 185(1–3):121–132, 1976.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choirat, C., Seri, R. (2006). The Asymptotic Distribution of Quadratic Discrepancies. In: Niederreiter, H., Talay, D. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31186-6_5

Download citation

Publish with us

Policies and ethics