Skip to main content

Ordering of Energy Levels in Heisenberg Models and Applications

  • Chapter
Mathematical Physics of Quantum Mechanics

Part of the book series: Lecture Notes in Physics ((LNP,volume 690))

Abstract

In a recent paper [17] we conjectured that for ferromagnetic Heisenberg models the smallest eigenvalues in the invariant subspaces of fixed total spin are monotone decreasing as a function of the total spin and called this property ferromagnetic ordering of energy levels (FOEL). We have proved this conjecture for the Heisenberg model with arbitrary spins and coupling constants on a chain [17, 20]. In this paper we give a pedagogical introduction to this result and also discuss some extensions and implications. The latter include the property that the relaxation time of symmetric simple exclusion processes on a graph for which FOEL can be proved, equals the relaxation time of a random walk on the same graph with jump rates given by the coupling constants, i.e., the relaxation time is independent of the number of particles. Therefore, our results also provide a proof of Aldous’ Conjecture in one dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Aldous, http://stat-www.berkeley.edu/users/aldous/problems.ps.

    Google Scholar 

  2. R. Bacher, Valeur propre minimale du laplacien de Coxeter pour le groupe symétrique, J. Algebra 167 (1994), 460–472.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Diaconis and L. Saloff-Coste, Comparison techniques for random walk on finite groups, Ann. Prob. 21 (1993), 2131–2156.

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Diaconis and M. Shahshahani, Generating a random permutation with random transpositions, Z. Wahrsch. Verw. Geb. 57 (1981), 159–179.

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Flatto, A.M. Odlyzko, and D.B. Wales, Random shuffles and group representations, Ann. Prob. 13 (1985), 154–178.

    Article  MATH  MathSciNet  Google Scholar 

  6. I.B. Frenkel and M.G. Khovanov, Canonical bases in tensor products and graphical calculus for uq(sl2), Duke Math. J. 87 (1997), 409–480.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Gutkin, Plancherel formula and critical spectral behaviour of the infinite XXZ chain, Quantum symmetries (Clausthal, 1991), World Scientific, River Edge, NJ, 1993, pp. 84–98.

    Google Scholar 

  8. S. Handjani and D. Jungreis, Rate of convergence for shuffing cards by transpositions, J. Theor. Prob. 9 (1996), 983–993.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Jimbo and T. Miwa, Algebraic analysis of solvable lattice models, Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, 1995.

    Google Scholar 

  10. L.H. Kauffman and S.L. Lins, Temperley-Lieb recoupling theory and invariants of 3-manifolds, Princeton University Press, 1994.

    Google Scholar 

  11. T. Kennedy, Expansions for droplet states in the ferromagnetic XXZ Heisenberg chain, Markov Processes and Rel. Fields 11 (2005) 223–236.

    MATH  Google Scholar 

  12. T. Koma and B. Nachtergaele, The spectral gap of the ferromagnetic XXZ chain, Lett. Math. Phys. 40 (1997), 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  13. V.E. Korepin, N.M. Bogoliubov, and A.G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, England, 1993.

    Google Scholar 

  14. E.H. Lieb, Two theorems on the Hubbard model, Phys. Rev. Lett. 62 (1989), 1201–1204.

    Article  MathSciNet  ADS  Google Scholar 

  15. E.H. Lieb and D. Mattis, Ordering energy levels of interacting spin systems, J. Math. Phys. 3 (1962), 749–751.

    Article  MATH  ADS  Google Scholar 

  16. B. Nachtergaele, W. Spitzer, and S. Starr, Droplet Excitations for the Spin-1/2 XXZ Chain with Kink Boundary Conditions, arXiv::math-ph/0508049.

    Google Scholar 

  17. B. Nachtergaele, W. Spitzer, and S. Starr, Ferromagnetic ordering of energy levels, J. Stat. Phys. 116 (2004), 719–738.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. B. Nachtergaele and S. Starr, in preparation.

    Google Scholar 

  19. B. Nachtergaele and S. Starr, Droplet states in the XXZ Heisenberg model, Commun. Math. Phys. 218 (2001), 569–607, math-ph/0009002.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. B. Nachtergaele and S. Starr, Ferromagnetic Lieb-Mattis theorem, Phys. Rev. Lett. 94 (2005), 057206, arXiv:math-ph/0408020.

    Article  ADS  Google Scholar 

  21. V. Pasquier and H. Saleur, Common structures between finite systems and conformal field theories through quantum groups, Nucl. Phys. B330 (1990), 523–556.

    Article  MathSciNet  ADS  Google Scholar 

  22. H.N.V. Temperley and E.H. Lieb, Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem, Proc. Roy. Soc. A322 (1971), 252–280.

    MathSciNet  ADS  Google Scholar 

  23. H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z. 52 (1950), 642–648.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Nachtergaele, B., Starr, S. (2006). Ordering of Energy Levels in Heisenberg Models and Applications. In: Asch, J., Joye, A. (eds) Mathematical Physics of Quantum Mechanics. Lecture Notes in Physics, vol 690. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-34273-7_13

Download citation

Publish with us

Policies and ethics