Skip to main content

Linear Codes and Polylinear Recurrences over Finite Rings and Modules (A Survey)

  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1719))

Abstract

We give a short survey of the results obtained in the last several decades that develop the theory of linear codes and polylinear recurrences over finite rings and modules following the well-known results on codes and polylinear recurrences over finite fields. The first direction contains the general results of theory of linear codes, including: the concepts of a reciprocal code and the MacWilliams identity; comparison of linear code properties over fields and over modules; study of weight functions on finite modules, that generalize in some natural way the Hamming weight on a finite field; the ways of representation of codes over fields by linear codes over modules. The second one develops the general theory of polylinear recurrences; describes the algebraic relations between the families of linear recurrent sequences and their periodic properties; studies the ways of obtaining “good” pseudorandom sequences from them. The interaction of these two directions leads to the results on the representation of linear codes by polylinear recurrences and to the constructions of recursive MDS-codes. The common algebraic foundation for the effective development of both directions is the Morita duality theory based on the concept of a quasi-Frobenius module.

The authors thank the referee for many interesting and helpful comments and suggestions that had improved the explication of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berlekamp E.R. Algebraic Coding Theory. McGraw-Hill, New York, 1968.

    Google Scholar 

  2. Berman S.D., Semisimple cyclic and abelian codes II. Cybernetics, 3 (1967) No. 3, 17–23.

    Article  MathSciNet  Google Scholar 

  3. Blake J.F. Codes over certain rings. Inform. and Control, 20 (1972), 396–404.

    Article  MATH  MathSciNet  Google Scholar 

  4. Blake J.F. Codes over integer residue rings. Inform. and Control, 29 (1972), No. 4, 295–300.

    Article  MathSciNet  Google Scholar 

  5. Bush K.A. Orthogonal arrays of index unity. Ann. Math. Stat., 23 (1952), 426–434.

    Article  MATH  MathSciNet  Google Scholar 

  6. Camion P. Abelian codes. Math. Res. Center, Univ. Wisconsin, Rept.1059, 1970.

    Google Scholar 

  7. Carlet C. On ℤ4-duality. IEEE Trans. Inform. Theory, IT-41 (1995), No. 5, 1487–1494.

    Article  MathSciNet  Google Scholar 

  8. Constantinescu I., Heise W., Honold T. Monomial extensions of isometries between codes over ℤm. Proceedings of the V-th Int. Workshop on Alg. And Comb. Coding Theory, Sozopol, Bulgaria, 1996, 98–104.

    Google Scholar 

  9. Constantinescu I., Heise W. A metric for codes over residue rings. Probl. of Inform. Transm., 33 (1997), No. 3.

    Google Scholar 

  10. Couselo E., Gonzalez S., Markov V., and Nechaev A. Recursive MDS-codes and recursively differentiable quasigroups. Discr. Math. and Appl., 8 (1998), No. 3, 217–247.

    Article  MATH  Google Scholar 

  11. Couselo E., Gonzalez S., Markov V., and Nechaev A. Recursive MDS-codes and recursively differentiable k-quasigroups. Proceedings of the Sixth International Workshop on Algebraic and Combinatorial Coding Theory (ACCT-VI). September 6–12, 1998, Pskov, Russia. 78–84.

    Google Scholar 

  12. Couselo E., Gonzalez S., Markov V., and Nechaev A. Recursive MDS-codes. Proceedings of the WCC’99 Workshop on Coding and Cryptography. January 11–14, 1999, Paris, France. 271–278.

    Google Scholar 

  13. Dai Z.D., Beth T., Gollmann D. Lower bounds for the linear complexity of sequences over residue rings. Lect. Notes Comput. Sci. 473. Berlin, 1991. 189–195.

    Google Scholar 

  14. Delsarte P. An algebraic approach to the association schemes of coding theory. Philips research, Rep. Suppl., 10, 1973.

    Google Scholar 

  15. J. Dénes & A.D. Keedwell, “Latin Squares and their Applications”. Akadémiai Kiadó, Budapest; Academic Press, New York; English Universities Press, London, 1974.

    Google Scholar 

  16. J. Dénes & A.D. Keedwell, “;Latin squares. New developments in the theory and applications”. Annals of Discrete Mathematics, 46. North-Holland, Amsterdam, 1991.

    Google Scholar 

  17. Ericson R., Zinoviev V.A. On Fourier-invariant partitions of finite abelian groups and the MacWilliams identity for group codes. Probl. of Inform. Transm., 32 (1996), No. 1.

    Google Scholar 

  18. Faith C. Algebra II. Ring Theory. Springer. Berlin, 1976.

    MATH  Google Scholar 

  19. Fitzpatrick P., Norton G.H. The Berlekamp—Massey algorithm and linear recurring sequences over a factorial domain. Appl. Alg. in Eng., Comm. and Comp., 6 (1995), 309–323.

    Google Scholar 

  20. Hammons A.R., Kumar P.V., Calderbank A. R., Sloane N. J. A., Sole P. The ℤ4-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. of Inf. Theory, 40 (1994), No. 2, 301–319.

    Article  MATH  MathSciNet  Google Scholar 

  21. Heise W., Quattrocci P. Informations-und Codierungstheorie. Springer, Berlin-Heidelberg, 1995.

    MATH  Google Scholar 

  22. Heise W., Honold Th., and Nechaev A. A. Weighted modules and representations of codes. Proceedings of the Sixth International Workshop on Algebraic and Combinatorial Coding Theory (ACCT-VI). September 6–12, 1998, Pskov, Russia, 123–129.

    Google Scholar 

  23. Honold Th., Landjev I. Linearly representable codes over chain rings. Proceedings of the Sixth International Workshop on Algebraic and Combinatorial Coding Theory (ACCT-VI). September 6–12, 1998, Pskov, Russia, 135–141.

    Google Scholar 

  24. Honold Th., Nechaev A.A., Weighted modules and presentations of codes. Probl. of Inform. Transm., to appear.

    Google Scholar 

  25. Hong S.J., Patel A.M., A general class of maximal codes for computer application. IEEE Trans. on computers, C-21 (1972), No. 12, dec., 1322–1331.

    Article  MathSciNet  Google Scholar 

  26. Kamlovskii O.V., Kuzmin A.S., Distribution of elements on cycles of linear recurring sequences over Galois rings. Russian Math. Surveys, 53 (1998), No. 2.

    Google Scholar 

  27. Klemm M. Über die Identität von MacWilliams für die Gewichtsfunktion von Codes. Arch. Math., 49 (1987), 400–406.

    Article  MATH  MathSciNet  Google Scholar 

  28. Klemm M. Selbstduals codes über dem Ring der ganzen Zahlen modulo 4. Arch. Math., 53 (1989), 201–207.

    Article  MATH  MathSciNet  Google Scholar 

  29. Krull W. Algebraische Theorie der Ringe II. Math. Ann., 91 (1923), 1–46.

    Article  MathSciNet  Google Scholar 

  30. Kumar P.V., Helleseth T., Improved binary codes and sequences families from ℤ4-linear codes. IEEE Trans. Inform. Theory, 42 (1995), No. 5, 1562–1593.

    Google Scholar 

  31. Kumar P.V., Helleseth T., Calderbank A.R. An upper bound for Weil exponential sums over Galois rings and applications. IEEE Trans. Inform. Theory, 41 (1995), No. 2, 456–468.

    Article  MATH  MathSciNet  Google Scholar 

  32. Kurakin V.L. The Berlekamp—Massey algorithm over finite rings, modules and bimodules. Discrete Math. and Appl., 8 (1998), No. 5.

    Google Scholar 

  33. Kurakin V.L., Kuzmin A.S., Mikhalev A.V., Nechaev A.A. Linear recurring sequences over rings and modules. (Contemporary Math. and its Appl. Thematic surveys. Vol. 10. Algebra 2. Moscow, 1994.) J. of Math. Sciences, 76 (1995), No. 6, 2793–2915.

    Article  MATH  MathSciNet  Google Scholar 

  34. Kurakin V., Kuzmin A., Nechaev A. Codes and linear recurrences over Galois rings and QF-modules of the characteristic 4. Proceedings of the Sixth International Workshop on Algebraic and Combinatorial Coding Theory (ACCT-VI). September 6–12, 1998, Pskov, Russia, 166–171.

    Google Scholar 

  35. Kuzmin A.S. Distribution of elements on cycles of linear recurring sequences over residue rings Russian Math. Surveys, 47 (1993), No. 6.

    Google Scholar 

  36. Kuzmin A.S., Kurakin V.L., Nechaev A.A. Pseudorandomand polylinear sequences Trudy po Diskretnoi Matematike (editors V.N. Sachkov et al), TVP, 1 (1997), 139–202.

    Google Scholar 

  37. Kuzmin A.S., Nechaev A.A. A construction of noise stable codes using linear recurring sequences over Galois rings. Russian Math. Surveys, 47 (1992), No. 5.

    Google Scholar 

  38. Kuzmin A.S., Nechaev A.A. Linearly presented codes and Kerdock code over an arbitrary Galois field of the characteristic 2. Russian Math. Surveys, 49 (1994), No. 5.

    Google Scholar 

  39. Kuzmin A.S., Nechaev A.A. Linear recurring sequences over Galois rings. Algebra and Logic, Plenum Publ. Corp., 34 (1995), No. 2.

    Google Scholar 

  40. Kuzmin A.S., Nechaev A.A. Complete weight enumerators of generalized Kerdock code and linear recursive codes over Galois rings. Proceedings of the WCC’99 Workshop on Coding and Cryptography. January 11–14, 1999, Paris, France, 332–336.

    Google Scholar 

  41. Lidl R. and Niederreiter H., Finite Fields, Addison-Wesley, London (1983).

    MATH  Google Scholar 

  42. Massey J.L. Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory, 15 (1969), No. 1, Part 1, 122–127.

    Article  MATH  MathSciNet  Google Scholar 

  43. MacWilliams F.J., Sloane N.J.A. The Theory of Error-Correcting Codes. North-Holland Publ. Co., 1977.

    Google Scholar 

  44. MacWilliams F.J. Sloane N.J.A. Pseudo-randomsequences and arrays. Proc. IEEE. 64 (1976), No. 11, 1715–1729.

    Article  MathSciNet  Google Scholar 

  45. Mikhalev A.V. and Nechaev A.A. Linear recurring sequences over modules. Acta Applicandae Mathematicae, 42 (1996), 161–202.

    Article  MATH  MathSciNet  Google Scholar 

  46. Nechaev A.A. Trace function in Galois ring and noise stable codes. V All-Union Symp. on theory of rings, algebras and modules, Novosibirsk, 1982, p.97 (in Russian).

    Google Scholar 

  47. Nechaev A.A. Kerdock code in a cyclic form. Diskr. Math. (USSR), 1 (1989), No. 4, 123–139 (in Russian). English translation: Discrete Math. and Appl., 1 (1991), No. 4, 365–384.

    MATH  MathSciNet  Google Scholar 

  48. Nechaev A.A. Linear recurring sequences over commutative rings. Discrete Math. and Appl., 2 (1992), No. 6, 659–683.

    MathSciNet  Google Scholar 

  49. Nechaev A.A. The cyclic types of linear substitutions over finite commutative rings. Mat. Sbornik, 184 (1993), No. 3, 21–56 (in Russian).

    MathSciNet  Google Scholar 

  50. Nechaev A.A. Linear recurring sequences over quasi-Frobenius modules. Russian Math. Surveys, 48 (1993), No. 3.

    Google Scholar 

  51. Nechaev A.A. Linear codes over finite rings and QF-modules. Proceedings of the IV-th Int. Workshop on Algebraic and Combinatorial Coding Theory. Novgorod, Sept. 1994, Sofia, Zakrila, 1994, 154–157.

    Google Scholar 

  52. Nechaev A.A. Finite Quasi-Frobenius modules, applications to codes and linear recurrences. Fundamentalnaya i prikladnaya matematika, 1 (1995), No. 1, 229–254 (in Russian).

    MATH  MathSciNet  Google Scholar 

  53. Nechaev A.A. Linear codes over Quasi-Frobenius modules. Doklady Math. Science. MAIK NAUKA. Interperiodika, 52 (1995), No. 3.

    Google Scholar 

  54. Nechaev A.A. Polylinear recurring sequences over modules and quasi-Frobenius modules. Proc. First Int. Tainan-Moscow Algebra Workshop, 1994, Walter de Gruyter, Berlin-N.Y., 1996, 283–298.

    Google Scholar 

  55. Nechaev A.A. Linear codes over modules and over spaces. MacWilliams identity. Proceedings of the 1996 IEEE Int. Symp. Inf. Theory and Appl., Victoria B.C., Canada, 1996, 35–38.

    Google Scholar 

  56. Nechaev A.A. and Kuzmin A.S. Linearly presentable codes. Proceedings of the 1996 IEEE Int. Symp. Inf. Theory and Appl., Victoria B.C., Canada, 1996, 31–34.

    Google Scholar 

  57. Nechaev A.A. and Kuzmin A.S. ℤ4-linearity, two approaches. Proceedings of the V-th Int. Workshop on Alg. and Comb. Coding Theory, Sozopol, Bulgaria, 1996, 212–215.

    Google Scholar 

  58. Nechaev A.A. and Kuzmin A.S. Formal duality of linearly presentable codes over a Galois field. Lecture Notes Comput. Sci., 1255, Springer, Berlin, 1997, 263–276.

    Google Scholar 

  59. Nechaev A.A., Kuzmin A.S., Trace-function on a Galois ring in coding theory. Lecture Notes Comput. Sci., 1255, Springer, Berlin, 1997, 277–290.

    Google Scholar 

  60. Nechaev A.A., Kuzmin A.S., and Markov V.T. Linear codes over finite rings and modules. Fundamentalnaya i prikladnaya matematika, 2 (1996), No. 3, 195–254 (in Russian).

    MathSciNet  Google Scholar 

  61. Nomura T., Miyakawa H., Imai H., Fukuda A. A theory of two-dimensional linear recurring arrays. IEEE Trans. Inform. Theory, 18 (1972), No. 6, 775–785.

    Article  MATH  MathSciNet  Google Scholar 

  62. Norton G., Salagean-Mandache A. On the structure and Hamming distance of linear codes over Galois rings. Proceedings of the WCC’99 Workshop on Coding and Cryptography. January 11–14, 1999, Paris, France, 337–341.

    Google Scholar 

  63. Peterson W.W., Weldon E.J. Error-correcting codes. The MIT Press, Cambridge, 1972.

    MATH  Google Scholar 

  64. Reeds J.A., Sloane N.J.A. Shift-register synthesis (modulo m). SIAM J. on computing, 14 (1985), No. 3, 505–513.

    Article  MATH  MathSciNet  Google Scholar 

  65. Sakata S. On determining the independent set for doubly periodic arrays and encoding two-dimensional cyclic codes and their duals. IEEE Trans. Inform. Theory, 27 (1981), 556–565.

    Article  MATH  MathSciNet  Google Scholar 

  66. Sakata S. Synthesis of two-dimensional linear feedback shift-registers and Groebner bases. Applied algebra, algebraic algorithms and error-correcting codes (AAECC), 1987. Lecture Notes in Comput. Sci., 356, Springer, Berlin, 1989, 394–407.

    Google Scholar 

  67. Sakata S. n-dimensional Berlekamp—Massey algorithm for multiply arrays and construction of multivariate polynomials with preassigned zeros. Applied algebra, algebraic algorithms and error-correcting codes (AAECC) (Rome, 1988). Lecture Notes in Comput. Sci., 357, Springer, Berlin, 1989, 356–376.

    Google Scholar 

  68. Sakata S. Two-dimensional shift register synthesis and Groebner bases for polynomial ideals over an integer residue ring. Discr. Appl. Math., 33 (1991), No. 1-3, 191–203.

    Article  MATH  MathSciNet  Google Scholar 

  69. Shankar P. On BCH codes over arbitrary integer rings. IEEE Trans. Inf. Theory, IT-25 (1979), No. 4, 480–483.

    Article  MathSciNet  Google Scholar 

  70. Solov’eva F.I., Avgustinovich S.V., Honold Th., Heise W. On the extendability of codes isometries. Journ. of Geometry. 61 (1998), 3–16.

    MathSciNet  Google Scholar 

  71. Spiegel E. Codes over ℤm. Inform. and Control, 35 (1977), No. 1, 48–51.

    Article  MATH  MathSciNet  Google Scholar 

  72. Spiegel E. Codes over ℤm. Revisited. Inform. and Control, 37 (1978), No. 1, 100–104.

    Article  MATH  MathSciNet  Google Scholar 

  73. Tsfasman M.A., Vlăduţ S.G. Algebraic-Geometric Codes. Math. and its Appl. (Soviet Series), Vol. 58. Kluwer Academic Publishers, 1991. 667 p.

    Google Scholar 

  74. Ward M. The arithmetical theory of linear recurring series. Trans. Amer. Math. Soc., 35 (1933), No. 3, 600–628.

    Article  MATH  MathSciNet  Google Scholar 

  75. Ward M. Arithmetical properties of sequences in rings. Ann. Math., 39 (1938), 210–219.

    Article  Google Scholar 

  76. Wolfmann J. Negacyclic and cyclic codes over ℤ4. Proceedings of the WCC’99 Workshop on Coding and Cryptography. January 11–14, 1999, Paris, France, 301–306.

    Google Scholar 

  77. Wood J.A. Duality for modules over finite rings and applications to coding theory. Preprint, 1996.

    Google Scholar 

  78. Wood J.A. Extension theorems for linear codes over finite rings. Preprint, 1996.

    Google Scholar 

  79. Zierler N. Linear recurring sequences. J. Soc. Ind. Appl. Math., 7 (1959), No. 1, 31–48.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurakin, V.L., Kuzmin, A.S., Markov, V.T., Mikhalev, A.V., Nechaev, A.A. (1999). Linear Codes and Polylinear Recurrences over Finite Rings and Modules (A Survey). In: Fossorier, M., Imai, H., Lin, S., Poli, A. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1999. Lecture Notes in Computer Science, vol 1719. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-46796-3_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-46796-3_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66723-0

  • Online ISBN: 978-3-540-46796-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics