Skip to main content

On the difficulty of finding reliable witnesses

  • Conference paper
  • First Online:
Algorithmic Number Theory (ANTS 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 877))

Included in the following conference series:

Abstract

For an odd composite number n, let w(n) denote the least witness for n; that is, the least positive number w for which n is not a strong pseudoprime to the base w. It is widely conjectured, but not proved, that w(n) > 3 for infinitely many n. We show the stronger result that w(n) > (log n)1/(3 log log log n) for infinitely many n. We also show that there are finite sets of odd composites which do not have a reliable witness, namely a common witness for all of the numbers in the set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. M. Adleman, Two theorems on random polynomial time, Proc. IEEE Symp. Found. Comp. Sci., 19 (1978), 75–83.

    Google Scholar 

  2. W. R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael numbers, Annals Math., to appear.

    Google Scholar 

  3. F. Arnault, Rabin-Miller primality test: composite numbers which pass it, Math. Comp., to appear.

    Google Scholar 

  4. E. Bach, Analytic methods in the analysis and design of number-theoretic algorithms, MIT Press, Cambridge, Mass., 1985.

    Google Scholar 

  5. E. Bach and L. Huelsbergen, Statistical evidence for small generating sets, Math. Comp. 61 (1993), 69–82.

    Google Scholar 

  6. P. Beauchemin, G. Brassard, C. Crépeau, C. Goutier and C. Pomerance, The generation of random integers that are probably prime, J. Cryptology 1 (1988), 53–64.

    Google Scholar 

  7. M. D. Coleman, On the equation b 1 p − b 2 P 2 = b 3, J. reine angew. Math. 403 (1990), 1–66.

    Google Scholar 

  8. I. Dåmgard, P. Landrock and C. Pomerance, Average case error estimates for the strong probable prime test, Math. Comp. 61 (1993), 177–194.

    Google Scholar 

  9. J. D. Dixon, Factorization and primality tests, Amer. Math. Monthly 91 (1984), 333–352.

    Google Scholar 

  10. P. Erdös, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956), 201–206.

    Google Scholar 

  11. J. B. Friedlander, Shifted primes without large prime factors, in Number Theory and Applications (ed. R. A. Mollin), (Kluwer, NATO ASI, 1989), 393–401.

    Google Scholar 

  12. D. R. Heath-Brown, Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression, Proc. London Math. Soc. (3) 64 (1992), 265–338.

    Google Scholar 

  13. G. H. Hardy and J. E. Littlewood, Some problems on partitio numerorum III. On the expression of a number as a sum of primes, Acta Math. 44 (1923), 1–70.

    Google Scholar 

  14. G. Jaeschke, On strong pseudoprimes to several bases, Math. Comp. 61 (1993), 915–926.

    Google Scholar 

  15. D. H. Lehmer, Strong Carmichael numbers, J. Austral. Math. Soc. Ser. A 21 (1976), 508–510.

    Google Scholar 

  16. H. W. Lenstra, Jr., private communication.

    Google Scholar 

  17. L. Monier, Evaluation and comparison of two efficient probabilistic primality testing algorithms, Theoret. Comput. Sci. 12 (1980), 97–108.

    Google Scholar 

  18. C. Pomerance, On the distribution of pseudoprimes, Math. Comp. 37 (1981), 587–593.

    Google Scholar 

  19. C. Pomerance, J. L. Selfridge and S. S. Wagstaff, Jr., The pseudoprimes to 25. 109, Math. Comp. 35 (1980), 1003–1026.

    Google Scholar 

  20. M. O. Rabin, Probabilistic algorithm for primality testing, J. Number Theory 12 (1980), 128–138.

    Google Scholar 

  21. R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput. 6 (1977), 84–85; erratum, ibid. 7 (1978), 118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Leonard M. Adleman Ming-Deh Huang

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alford, W.R., Granville, A., Pomerance, C. (1994). On the difficulty of finding reliable witnesses. In: Adleman, L.M., Huang, MD. (eds) Algorithmic Number Theory. ANTS 1994. Lecture Notes in Computer Science, vol 877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-58691-1_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-58691-1_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58691-3

  • Online ISBN: 978-3-540-49044-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics