Skip to main content

A dynamic algorithm for line graph recognition

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1017))

Abstract

For a graph G=(V, E) its line graph L(G) has the node set E and two nodes of L(G) are adjacent if the corresponding edges of G have a common endpoint. The problem of finding G for a given L was already optimally solved by Lehot[7] and Roussopoulos[11]. Here we present a new dynamic solution to this problem, where we can add or delete a node v in L(G) in time proportional to the size of its adjacency list.

This author was partially supported by the Swiss National Science Foundation

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Eppstein, Z. Galil, G.F. Italiano and T. Spencer. Separator based sparsification for dynamic planar graph algorithms. Proc. 25th Annual Symp. on Theory of Computing (1993), 208–217.

    Google Scholar 

  2. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory of NP-Completeness. W. Freeman and Company, 1979.

    Google Scholar 

  3. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, Academic Press, 1980.

    Google Scholar 

  4. F. Harary. Graph Theory, Addison-Wesley, 1969.

    Google Scholar 

  5. H. A. Jung. Zu einem Isomorphiesatz von H. Whitney für Graphen. Math. Annalen164 (1966), 270–271.

    Google Scholar 

  6. J. Krausz. Démonstration nouvelle d'un théorème de Whitney sur les résaux. Mat. Fiz. Lapok50(1943), 75–85.

    Google Scholar 

  7. P. G. H. Lehot. An Optimal Algorithm to Detect a Line Graph and Output Its Root Graph. Journal of the ACM21(1974), 569–575.

    Google Scholar 

  8. J. Naor and M.B. Novick. An Efficient Reconstruction of a Graph from Its Line Graph in Parallel. Journal of Algorithms11(1990), 132–143.

    Google Scholar 

  9. O. Ore. Theory of Graphs, American Mathematical Society Colloquium Publications, 38(1962).

    Google Scholar 

  10. M. Rauch. Improved data structures for fully dynamic biconnectivity. Proc. 26th Annual Symp. on Theory of Computing (1994), 686–695.

    Google Scholar 

  11. N. D. Roussopoulos. A max{m, n} Algorithm for Detecting the Graph H from its Line Graph G. Information Processing Letters2(1973), 108–112.

    Google Scholar 

  12. K. Simon. Effiziente Algorithmen für perfekte Graphen. B. G. Teubner, Stuttgart, 1992.

    Google Scholar 

  13. H.-P. Schmocker. Erkennung von Kantengraphen. Diploma thesis, Institut für Theoretische Informatik, ETH Zürich, 1991.

    Google Scholar 

  14. A. C. M. van Rooij and H. S. Wilf. The Interchange Graph of a Finite Graph. Acta Mathematica Academiae Scientiarum Hungaricae16(1965), 263–269.

    Google Scholar 

  15. H. Whitney. Congruent Graphs and the Connectivity of Graphs. American Journal of Mathematics54(1932), 150–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manfred Nagl

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Degiorgi, D.G., Simon, K. (1995). A dynamic algorithm for line graph recognition. In: Nagl, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 1995. Lecture Notes in Computer Science, vol 1017. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60618-1_64

Download citation

  • DOI: https://doi.org/10.1007/3-540-60618-1_64

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60618-5

  • Online ISBN: 978-3-540-48487-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics