Skip to main content

Smooth surfaces for multi-scale shape representation

  • Invited Talk
  • Conference paper
  • First Online:
Foundations of Software Technology and Theoretical Computer Science (FSTTCS 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1026))

Abstract

The skin of a set of weighted points in ℓd is defined as a differentiable and orientable (d}- 1)-manifold surrounding the points. The skin varies continuously with the points and weights and at all times maintains the homotopy equivalence between the dual shape of the points and the body enclosed by the skin. The variation allows for arbitrary changes in topological connectivity, each accompanied by a momentary violation of the manifold property. The skin has applications to molecular modeling and docking and to geometric metamorphosis.

Research reported in this paper is partially supported by the Office of Naval Research, grant N00014-95-1-0691, and by the National Science Foundation through the Alan T. Waterman award, grant CCR-9118874.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Akkiraju, H. Edelsbrunner, M. Facello, P. Fu, E. P. Mücke and C. Varela. Alpha shapes: definition and software. In “Proc. Internat. Comput. Geom. Software Workshop”, ed. N. Amenta, Geometry Center Res. Rept. GCG-80, 1995.

    Google Scholar 

  2. J. M. Blaney and J. S. Dixon. A good ligand is hard to find: automated docking methods. Perspective in Drug Discovery and Design1 (1993), 301–319.

    Google Scholar 

  3. B. Delaunay. Sur la sphère vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk7 (1934), 793–800.

    Google Scholar 

  4. C. J. A. Delfinado and H. Edelsbrunner. An incremental algorithm for betti numbers of simplicial complexes. In “Proc. 9th Ann. Sympos. Comput. Geom. 1993”, 232–239.

    Google Scholar 

  5. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, Germany, 1987.

    Google Scholar 

  6. H. Edelsbrunner. The union of balls and its dual shape. László Fejes Tóth Festschrift, eds. I. Bárány and J. Pach, Discrete Comput. Geom. 13 (1995), 415–440.

    Google Scholar 

  7. H. Edelsbrunner, M. Facello and J. Liang. On the definition and the construction of pockets in macromolecules. Manuscript, 1995.

    Google Scholar 

  8. H. Edelsbrunner, D. G. Kirkpatrick and R. Seidel. On the shape of a set of points in the plane. IEEE Trans. Inform. TheoryIT-29 (1983), 551–559.

    Google Scholar 

  9. H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graphics13 (1994), 43–72.

    Google Scholar 

  10. G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic Press, Boston, 1988.

    Google Scholar 

  11. P. J. Giblin. Graphs, Surfaces and Homology. 2nd edition, Chapman and Hall, London, 1981.

    Google Scholar 

  12. M. Henle. A Combinatorial Introduction to Topology. Freeman, San Francisco, 1979.

    Google Scholar 

  13. J. R. Kent, W. E. Carlson and R. E. Parent. Shape transformation for polyhedral objects. Computer Graphics26 (1992), 47–54.

    Google Scholar 

  14. I. W. Kuntz. Structure-based strategies for drug design and discovery. Science257 (1992), 1078–1082.

    Google Scholar 

  15. B. Lee and F. M. Richards. The interpretation of protein structures: estimation of static accessibility. J. Mol Biol.55 (1971), 379–400.

    Google Scholar 

  16. J. Milnor. Morse Theory. Princeton Univ. Press, New Jersey, 1969.

    Google Scholar 

  17. F. P. Preparata and M. I. Shamos. Computational Geometry — an Introduction. Springer-Verlag, New York, 1985.

    Google Scholar 

  18. F. M. Richards. Areas, volumes, packing, and protein structure. Ann. Rev. Biophys. Bioeng.6 (1977), 151–176.

    Google Scholar 

  19. G. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J. Reine Angew. Math.133 (1907), 97–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. S. Thiagarajan

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Edelsbrunner, H. (1995). Smooth surfaces for multi-scale shape representation. In: Thiagarajan, P.S. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1995. Lecture Notes in Computer Science, vol 1026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-60692-0_63

Download citation

  • DOI: https://doi.org/10.1007/3-540-60692-0_63

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60692-5

  • Online ISBN: 978-3-540-49263-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics