Skip to main content

Wave Maps and Ill-posedness of their Cauchy Problem

  • Chapter
New Trends in the Theory of Hyperbolic Equations

Part of the book series: Operator Theory: Advances and Applications ((APDE,volume 159))

Abstract

In this review article we present an introduction to the theory of wave maps, give a short overview of some recent methods used in this field and finally we prove some recent results on ill-posedness of the corresponding Cauchy problem for the wave maps in critical Sobolev spaces. The low regularity solutions for the wave map problem are studied by the aid of appropriate bilinear estimates in the spirit of ones introduced by Klainerman and Bourgain. Our approach to obtain ill-posedness in critical Sobolev norms uses suitable family of wave maps constructed via geodesic flow on the target manifold. We give two alternative proofs of the ill-posedness: the first approach is based on the application of Fourier analysis tools, while the second proof is based on the application of the classical fundamental solution representation for the free wave equation. For the case of subcritical Sobolev norms we establish non-uniqueness of the corresponding Cauchy problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Adams, Sobolev Spaces. Academic Press, New York, 1975.

    Google Scholar 

  2. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I, II, Geom. Funct. Anal. 3 (1993) 107–156, 209–262.

    MATH  MathSciNet  Google Scholar 

  3. J. Bourgain, Periodic Korteweg-de Vries equation with measures as initial data, Selecta Math. 3 (1997) 115–159.

    MATH  MathSciNet  Google Scholar 

  4. Ph. Brenner and P. Kumlin, On wave equations with supercritical nonlinearities, Arch. Math. 74 (2000) 129–147.

    MathSciNet  Google Scholar 

  5. T. Cazenave, J. Shatah, and A. S. Tahvildar-Zadeh, Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang-Mills fields, Ann. Inst. H. Poincaré Phys. Théor. 68,3 (1998), 315–349.

    MathSciNet  Google Scholar 

  6. Y. Choquet-Bruhat, Global existence for non-linear σ-models, Rend. Sem. Mat. Univ. Pol. Torino, Special Issue (1988), 65–86.

    Google Scholar 

  7. Y. Choquet-Bruhat, Global wave maps on curved space times, Mathematical and quantum aspects of relativity and cosmology (Pythagoreon, 1998), 1–29, Lecture Notes in Phys., 537, Springer, Berlin, 2000.

    Google Scholar 

  8. D. Christodoulou and A. S. Tahvildar-Zadeh, On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math. 46,7 (1993), 1041–1091.

    MathSciNet  Google Scholar 

  9. P. D’Ancona and V. Georgiev, On the continuity of the solution operator to the wave map system, accepted in CPAM.

    Google Scholar 

  10. P. D’Ancona and V. Georgiev, Low regularity solutions for the wave map equation into the 2-D sphere, accepted in Math. Zeitschrift.

    Google Scholar 

  11. A. Freire, S. Müller and M. Struwe, Weak compactness of wave maps and harmonic maps, Ann. Inst. Henri Poincaré 15 No.6 (1998) 425–759.

    Google Scholar 

  12. V. Georgiev and A. Ivanov, Concentration of local energy for two-dimensional wave maps, preprint 2003.

    Google Scholar 

  13. M. G. Grillakis, Classical solution for the equivariant wave maps in 1+2 dimensions, preprint, 1991.

    Google Scholar 

  14. M. G. Grillakis, The wave map problem, In Current developments in mathematics, 1997 (Cambridge, MA), Int. Press, Boston, MA, 1999, pp. 227–230.

    Google Scholar 

  15. J. Ginibre and G. Velo, The Cauchy problem for the O(N), CP(N−1), and GC(N, p) models, Ann. Physics 142 (1982), no. 2, 393–415.

    Article  MathSciNet  Google Scholar 

  16. C. H. Gu, On the Cauchy problem for harmonic maps defined on two-dimensional Minkowski space, Comm. Pure Appl. Math. 33,6 (1980), 727–737.

    MATH  MathSciNet  Google Scholar 

  17. H. Karcher and J. C. Wood, Non-existence results and growth properties of harmonic maps and forms, J. Reine Angew. Math. 353 (1984) 165–180.

    MathSciNet  Google Scholar 

  18. T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), 891–907.

    MathSciNet  Google Scholar 

  19. S. Klainerman and M. Machedon, On the regularity properties of a model problem related to wave maps, Duke Math. J. 87 (1997), no. 3, 553–589.

    Article  MathSciNet  Google Scholar 

  20. S. Klainerman and S. Selberg, Remark on the optimal regularity for equations of wave maps type, Comm. Partial Differential Equations 22,5–6 (1997), 901–918.

    MathSciNet  Google Scholar 

  21. S. Klainerman and S. Selberg, Bilinear estimates and applications to nonlinear wave equations (English. English summary), Commun. Contemp. Math. 4 (2002), no. 2, 223–295.

    MathSciNet  Google Scholar 

  22. C. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. Journal 106 (2001) 617–632.

    MathSciNet  Google Scholar 

  23. J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Vol.I, Springer Verlag, Berlin 1972.

    Google Scholar 

  24. L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations., SIAM J. Math. Anal. 33 (2001) 982–988.

    Article  MathSciNet  Google Scholar 

  25. S. Müller and M. Struwe, Global existence of wave maps in 1 + 2 dimensions with finite energy data, Topol. Methods Nonlinear Anal. 7,2 (1996), 245–259.

    MathSciNet  Google Scholar 

  26. A. Nahmod, A. Stefanov and K. Uhlenbeck, On the well-posedness of the wave map problem in high dimensions, Comm. Anal. Geom. 11, Number 1, 49–83, 2003.

    MathSciNet  Google Scholar 

  27. K. Nakanishi and M. Ohta, On global existence of solutions to nonlinear wave equations of wave map type, Nonlinear Anal. TMA 42, (2000), 1231–1252.

    Article  MathSciNet  Google Scholar 

  28. T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators and Nonlinear Partial Differential Equations, Walter de Gruyter, Berlin 1996.

    Google Scholar 

  29. J. Shatah, Weak solutions and development of singularities of the su(2) σ-model, Comm. Pure Appl. Math. 41,4 (1988), 459–469.

    MATH  MathSciNet  Google Scholar 

  30. J. Shatah and M. Struwe, Geometric wave equations, New York University Courant Institute of Mathematical Sciences, New York, 1998.

    Google Scholar 

  31. J. Shatah and M. Struwe, The Cauchy problem for wave maps, Preprint; to appear on International Math. Research Notices.

    Google Scholar 

  32. J. Shatah and A. Sh. Tahvildar-Zadeh, On the Cauchy problem for equivariant wave maps, Comm. Pure Appl. Math. 47 (1994), no. 5, 719–754.

    MathSciNet  Google Scholar 

  33. I. Sigal, Nonlinear semi-groups, Ann. of Math. 78 No. 2 (1963) 339–364.

    MathSciNet  Google Scholar 

  34. E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971, Princeton Mathematical Series, No. 32.

    Google Scholar 

  35. M. Struwe, Wave maps, In Nonlinear partial differential equations in geometry and physics (Knoxville, TN, 1995). Birkhäuser, Basel, 1997, pp. 113–153.

    Google Scholar 

  36. M. Struwe, Equivariant wave maps in two space dimensions, preprint, to appear in Comm. Pure and Appl. Math.

    Google Scholar 

  37. M. Struwe, Radially symmetric wave maps from 1+2-dimensional Minkowski space to the sphere, Preprint; to appear on Math. Zeitschrift.

    Google Scholar 

  38. M. Struwe, Radially symmetric wave maps from 1+2-dimensional Minkowski space to general targets, Preprint.

    Google Scholar 

  39. T. Tao, Ill-posedness for one-dimensional wave maps at the critical regularity, Amer. J. Math. 122 (2000), no. 3, 451–463.

    MATH  MathSciNet  Google Scholar 

  40. T. Tao, Global regularity of wave maps II. Small energy in two dimensions, Comm. Math. Phys. 224, (2001), 443–544.

    Article  MATH  MathSciNet  Google Scholar 

  41. D. Tataru, Local and global results for wave maps I, Comm. Part. Diff. Eq. 23 (1998) 1781–1793.

    MATH  MathSciNet  Google Scholar 

  42. D. Tataru, On global existence and scattering for the wave maps equation, Amer. J. Math. 123 (2001), no. 1, 37–77.

    MATH  MathSciNet  Google Scholar 

  43. M. Taylor, Partial differential equations, Vol.III, Springer Verlag, New York, 1997.

    Google Scholar 

  44. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Holland Co., Amsterdam 1978.

    Google Scholar 

  45. H. Triebel, Interpolation theory, function spaces, differential operators, second ed., Johann Ambrosius Barth, Heidelberg, 1995.

    Google Scholar 

  46. N. Tzvetkov, Remark on the local ill-posedness for KdV equation, C. R. Acad. Sci. Paris Sèr. I Math. 329 (1999) 1043–1047.

    MATH  MathSciNet  Google Scholar 

  47. Y. Zhou, Global weak solutions for (1+2)-dimensional wave maps into homogeneous spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 16,4 (1999), 411–422.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

D’Ancona, P., Georgiev, V. (2005). Wave Maps and Ill-posedness of their Cauchy Problem. In: Reissig, M., Schulze, BW. (eds) New Trends in the Theory of Hyperbolic Equations. Operator Theory: Advances and Applications, vol 159. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7386-5_1

Download citation

Publish with us

Policies and ethics