Skip to main content

Amplitude Equations for Spdes: Approximate Centre Manifolds and Invariant Measures

  • Chapter
  • First Online:
Probability and Partial Differential Equations in Modern Applied Mathematics

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 140))

Abstract

We review recent results on the approximation of transient dynamics of SPDEs by amplitude equations. As an application we derive the flow along an approximate centre manifold, and we study the dynamics of random fixed points. To discuss the long-time behaviour we give an approximation result for invariant measures.

The work of the first author was supported by DFG “Forschungsst ipendium” grant BL 535/5-1. He would like to thank the IMA for support.

The work of the second author was supported by the Fonds National Suisse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. ARNOLD, Random dynamical systems, Springer Monographs in Mathematics. Springer, Berlin, 1998.

    Book  Google Scholar 

  2. B. AULBACH, Continuous and discrete dynamics near manifolds of equilibria, Lecture Notes in Math., 1058, Springer, Berlin, 1984.

    Book  Google Scholar 

  3. N. BERGLUND AND B. GENTZ, Geometric singular perturbation theory for stochastic differential equations, J. Differential Equations 191(1): 1–54 (2003).

    Article  MathSciNet  Google Scholar 

  4. D. BLÖMKER, Amplitude equations for locally cubic non-autonomous nonlinearities, SIAM J. Appl. Dyn. Sys., 2(2): 464–486 (2003).

    Article  MathSciNet  Google Scholar 

  5. D. BLÖMKER, S. MAIER-PAAPE, AND G. SCHNEIDER, The stochastic Landau equation as an amplitude equation, Discrete and Continuous Dynamical Systems, Series B, 1(4): 527–541 (2001).

    Article  MathSciNet  Google Scholar 

  6. D. BLÖMKER, C. GUGG, AND M. RAIBLE, Thin-film-growth models: roughness and correlation functions, European J. Appl. Math., 13(4): 385–402 (2002).

    Article  MathSciNet  Google Scholar 

  7. D. BLOMKER AND M. HAIRER, Multiscale expansion of invariant measures for SPDEs, to appear in Commun. Math. Phys., 2004.

    Google Scholar 

  8. D. BLÖMKER, Approximation of the stochastic Rayleigh-Benard problem near the onset of instability and related problems, Submitted for publication, 2003.

    Google Scholar 

  9. D. BLÖMKER, M. HAIRER, AND G. PAVLIOTIS, Stochastic amplitude equations in large domains, In Preparation, 2004.

    Google Scholar 

  10. Z. BRZEŹNIAK AND S. PESZAT, Space-time continuous solutions to SPDE’s driven by a homogeneous Wiener process, Studia Math. 137(3): 261–299 (1999).

    Article  MathSciNet  Google Scholar 

  11. Z. BRZEZNIAK AND S. P ESZAT, Strong local and global solutions for stochastic Navier-Stokes equations. Infinite dimensional stochastic analysis (Amsterdam, 1999), pp. 85–98, Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., 52, R. Neth. Acad. Arts ScL, Amsterdam (2000).

    Google Scholar 

  12. P. COLLET AND J.P. ECKMANN, Instabilities and fronts in ext end ed systems, Princeton Univ. Press, Princeton, NJ, 1990.

    MATH  Google Scholar 

  13. P. COLLET AND J.P. ECKMANN, The time dependent amplitude equation for the Swiit-Hohenoetg problem, Comm. Math. Phys., 132(1): 139–153 (1990).

    Article  MathSciNet  Google Scholar 

  14. H. CRAUEL, A. DEBUSSCHE, AND F. FLANDOLI, Random attractors, J. Dynam. Differential Equations, 9(2): 307–341 (1997).

    Article  MathSciNet  Google Scholar 

  15. M.C. CROSS AND P.C. HOHENBERG, Pattern formation outside of equilibrium, Rev. Mod. Phys., 65: 851–1112 (1993).

    Article  Google Scholar 

  16. G. PAVLIOTIS AND A. STUART, White noise limits for inertial particles in a random field. Preprint (2003).

    Google Scholar 

  17. G. PAVLIOTIS AND A. STUART, Itô versus Stratonovich white noise limits. Preprint (2003).

    Google Scholar 

  18. G. DAPRATO AND J. ZABCZYK, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992.

    Google Scholar 

  19. G. DA PRATO AND J. ZABCZYK, Ergodicity for infinite-dimensional systems, London Mathematical Society Lecture Note Series, 229, Cambridge University Press (1996).

    Google Scholar 

  20. J. DUAN AND V.J. ERVIN, On nonlinear amplitude evolution under sto chastic forcing, Appl. Math. Comput. 109(1): 59–65 (2000).

    MathSciNet  MATH  Google Scholar 

  21. J. DUAN, K. Lu, AND B. SCHMALFUSS, Invariant manifolds for stochastic partial differential equations, The Annals of Probability, to appear.

    Google Scholar 

  22. W. EAND D. LIU, Gibbsian dynamics and invariant measures for stochastic dissipative PDEs, Journal of Statistical Physics, 108: 4773–4785 (2002).

    MathSciNet  Google Scholar 

  23. A.V. GETLlNG, Reyleigh-Bétierd Convection — Structures and Dynamics, World Scientific Press, 1998.

    Google Scholar 

  24. M. HAIRER AND J.C. MATTINGLY, Ergodicity of the 2D Navier-Stokes Equations with Degenerate Stochastic Forcing. Preprint, 2004.

    Google Scholar 

  25. H. HAKEN, Synergetics. An introduction. Nonequilibrium phase transitions and self-organization in physics, chemistry, and biology, Springer Series in Synergetics, Vol. 1. Berlin etc.: Springer, 1983.

    MATH  Google Scholar 

  26. D. HENRY, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, 840. Berlin etc.: Springer, 1981.

    Book  Google Scholar 

  27. P.C. HOHENllERG AND J.B. SWIFT, Effects of additive noise at the onset of Rayleigh-Bénard convection, Physical Review A, 46: 4773–4785 (1992).

    Article  Google Scholar 

  28. B.B. KING, O. STEIN, AND M. WINKLER, A fourth-order parabolic equation modeling epitaxial thin film growth, J. Math. Anal. Appl., 286(2): 459–490 (2003).

    Article  MathSciNet  Google Scholar 

  29. R. KUSKE, Multi-scale analysis of noise-sensitivity near a bifurcation, Proceedings of the IUTAM Symposium held in Monticello, IL, USA, 26-30, August 2002 (eds. N. Sri Namachchivaya and Y.K. Lin), Kluwer, 2002.

    Google Scholar 

  30. S.B. KUKSIN AND A. SHlRIKYAN, A Coupling Approach to Randomly Forced Nonlinear PDE’s. I, Commun. Math. Phys., 221: 351–366 (2001).

    Article  MathSciNet  Google Scholar 

  31. A. LUNARDI, Analytic semigroups and optimal regularity in parabolic problems, Progress in Nonlinear Differential Equations and th eir Applications, 16, Birkhauser Verlag, Basel, 1995.

    Google Scholar 

  32. J.C. MATTINGLY, Exponential convergence for the stochastically forced Navier Stokes equations and other partially dissipative dynamics, Commun. Math. Phys., 230: 421–462 (2002).

    Article  MathSciNet  Google Scholar 

  33. S.P. MEYN AND R.L. TWEEDIE, Markov Chains and Stochastic Stability, Springer, New York, 1994.

    MATH  Google Scholar 

  34. A. MIELKE, G. SCHNEIDER, AND A. ZIEGRA, Comparison of inertial manifolds and application to modulated systems, Math. Nachr., 214: 53–69 (2000).

    Article  MathSciNet  Google Scholar 

  35. A. MIELKE AND G. SCHNEIDER, Attractors for modulation equations on unbounded domains — existence and comparison, Nonlinearity, 8: 743–768 (1995).

    Article  MathSciNet  Google Scholar 

  36. S. MOHAMMED, T. ZHANG, AND H. ZHAO, The Stable Manifold Theorem for Semi-linear Stochastic Evolution Equations and Stochastic Partial Differential Equations. Part I: The Stoch astic Semiflow, preprint (2003).

    Google Scholar 

  37. A. PAZY, Semigroups of Linear Operators and Application to Partial Differential Equations, Springer, 1983.

    Google Scholar 

  38. S. RACHEV, Probability metrics and the stability of stochastic models, John Wiley & Sons Ltd., Chichester, 1991.

    MATH  Google Scholar 

  39. M. SCHEUTZOW, Comparison of various concepts of a random at tractor: a case study, Arch. Math. (Basel), 78(3): 233–240 (2002).

    Article  MathSciNet  Google Scholar 

  40. G. SCHNEIDER, Bifurcation theory for dissipative systems on unbounded cylindrical domains—an introduction to the mathematical theory of modulation equations, ZAMM (Z. Angew. Math. Mech.) 81(8): 507–522 (2001).

    Article  MathSciNet  Google Scholar 

  41. B. SCHMALFUSS, Measure attractors and random attractors for stochastic partial differential equations, Stochastic Anal. Appl., 17(6): 1075–1101 (1999).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Blömker, D., Hairer, M. (2005). Amplitude Equations for Spdes: Approximate Centre Manifolds and Invariant Measures. In: Waymire, E.C., Duan, J. (eds) Probability and Partial Differential Equations in Modern Applied Mathematics. The IMA Volumes in Mathematics and its Applications, vol 140. Springer, New York, NY. https://doi.org/10.1007/978-0-387-29371-4_4

Download citation

Publish with us

Policies and ethics