Skip to main content

Abstract

We prove existence of solutions for the Benjamin—Ono equation with data in H s(ℝ), s > 0. Thanks to conservation laws, this yields global solutions for H 21 (ℝ) data, which is the natural “finite energy” class. Moreover, unconditional uniqueness is obtained in L t (H 21 (ℝ)), which includes weak solutions, while for s > 203 , uniqueness holds in a suitable space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech. 29(1967), 559–592.

    Article  MATH  Google Scholar 

  2. N. Burq, P. Gérard, and N. Tzvetkov. Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126(2004), 569–605.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Ginibre and G. Velo. Smoothing properties and existence of solutions for the generalized Benjamin—Ono equation, J. Differential Equations 93(1991), 150–212.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Hayashi and T. Ozawa. Remarks on nonlinear Schrödinger equations in one space dimension, Differential Integral Equations 7(2): 453–461, 1994.

    MATH  MathSciNet  Google Scholar 

  5. A. D. Ionescu and C. E. Kenig, Global well-posedness of the Benjamin—Ono equation in low regularity spaces, Preprint, arXiv: math. AP/0508632, 2005.

    Google Scholar 

  6. C. E. Kenig and K. D. Koenig, On the local well-posedness of the Benjamin—Ono and modified Benjamin—Ono equations, Math. Res. Lett. 10(2003), 879–895.

    MATH  MathSciNet  Google Scholar 

  7. H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin—Ono equation in H s(ℝ), Int. Math. Res. Not. 26(2003), 1449–1464.

    Article  MathSciNet  Google Scholar 

  8. H. Koch and N. Tzvetkov, Nonlinear wave interactions for the Benjamin—Ono equation, Preprint, arXiv:math.AP/0411434, 2004.

    Google Scholar 

  9. L. Molinet, J. C. Saut, and N. Tzvetkov, Ill-posedness issues for the Benjamin—Ono and related equations, SIAM J. Math. Anal. 33(2001), 982–988 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39(1975), 1082–1091.

    Article  MathSciNet  Google Scholar 

  11. G. Ponce, On the global well-posedness of the Benjamin—Ono equation, Differential Integral Equations 4(1991), 527–542.

    MATH  MathSciNet  Google Scholar 

  12. T. Tao, Global well-posedness of the Benjamin—Ono equation in H 1(ℝ), J. Hyperbolic Differ. Equ. 1(2004), 27–49.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Burq, N., Planchon, F. (2006). The Benjamin—Ono equation in energy space. In: Bove, A., Colombini, F., Del Santo, D. (eds) Phase Space Analysis of Partial Differential Equations. Progress in Nonlinear Differential Equations and Their Applications, vol 69. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4521-2_5

Download citation

Publish with us

Policies and ethics