Skip to main content

Local geometric Langlands correspondence and affine Kac-Moody algebras

  • Chapter
Algebraic Geometry and Number Theory

Part of the book series: Progress in Mathematics ((PM,volume 253))

Abstract

Let \( \mathfrak{g} \) be a simple Lie algebra over ℂ and G a connected algebraic group with Lie algebra \( \mathfrak{g} \). The affine Kac-Moody algebra \( \hat {\mathfrak{g}} \) is the universal central extension of the formal loop agebra \( \mathfrak{g} \)((t)). Representations of \( \hat {\mathfrak{g}} \) have a parameter, an invariant bilinear form on \( \mathfrak{g} \), which is called the level. Representations corresponding to the bilinear form which is equal to minus one half of the Killing form are called representations of critical level. Such representations can be realized in spaces of global sections of twisted D-modules on the quotient of the loop group G((t)) by its “open compact” subgroup K, such as G[[t]] or the Iwahori subgroup I.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arkhipov, A new construction of the semi-infinite BGG resolution, q-alg/9605043, 1996.

    Google Scholar 

  2. A. Arkhipov and R. Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group, math.RT/0201073, 2002.

    Google Scholar 

  3. S. Arkhipov, R. Bezrukavnikov, V. Ginzburg, Quantum groups, the loop Grassmannian, and the Springer resolution, J. Amer. Math. Soc., 17 (2004), 595–678.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Arkhipov and D. Gaitsgory, Differential operators on the loop group via chiral algebras, Internat. Math. Res. Notices, 2002-4 (2002), 165–210.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Arkhipov and D. Gaitsgory, Another realization of the category of modules over the small quantum group, Adv. Math., 173 (2003) 114–143.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Beilinson and J. Bernstein, Localisation de g-modules, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 15–18.

    MATH  MathSciNet  Google Scholar 

  7. A. Beilinson and V. Drinfeld, Chiral Algebras, American Mathematical Society Colloquium Publications, Vol. 51, American Mathematical Society, Providence, RI, 2004.

    MATH  Google Scholar 

  8. A. Beilinson, Tensor products of topological vector spaces, addendum to [CHA].

    Google Scholar 

  9. A. Beilinson and V. Drinfeld, Quantization of Hitchin’s Integrable System and Hecke Eigensheaves, available online from http://www.math.uchicago.edu/~arinkin/langlands/.

    Google Scholar 

  10. A. Beilinson and V. Drinfeld, Opers, math.AG/0501398, 2005.

    Google Scholar 

  11. A. Beilinson and V. Ginzburg, Wall-crossing functors and D-modules, Representation Theory, 3 (1999), 1–31.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Bernstein, Trace in categories, in Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Progress in Mathematics, Vol. 92, Birkhäuser Boston, Cambridge, MA, 1990, 417–423.

    Google Scholar 

  13. J. Bernstein and V. Luntz, Equivariant Sheaves and Functors, Lecture Notes in Mathematics, Vol. 1578, Springer-Verlag, Berlin, 1994.

    MATH  Google Scholar 

  14. R. Bezrukavnikov, unpublished manuscript.

    Google Scholar 

  15. V. Drinfeld, DG quotients of DG categories, J. Algebra, 272 (2004), 643–691.

    Article  MATH  MathSciNet  Google Scholar 

  16. V. Drinfeld, Infinite-dimensional vector bundles in algebraic geometry, in P. Etinghof, V. Retakh, and I. Singer, eds., The Unity of Mathematics, Birkhäuser Boston, Cambridge, MA, 2005, 263–304.

    Google Scholar 

  17. V. Drinfeld and V. Sokolov, Lie algebras and KdV type equations, J. Soviet Math., 30 (1985), 1975–2036.

    Article  Google Scholar 

  18. D. Eisenbud and E. Frenkel, Appendix to M. MustaţĂ, “Jet schemes of locally complete intersection canonical singularities,” Invent. Math., 145-3 (2001), 397–424.

    Article  MathSciNet  Google Scholar 

  19. B. Feigin, The semi-infinite cohomology of Kac-Moody and Virasoro Lie algebras, Russian Math. Survey, 39-2 (1984), 155–156.

    Article  MathSciNet  Google Scholar 

  20. B. Feigin and E. Frenkel, A family of representations of affine Lie algebras, Russian Math. Survey, 43-5 (1988), 221–222.

    Article  MATH  MathSciNet  Google Scholar 

  21. B. Feigin and E. Frenkel, Affine Kac-Moody algebras and semi-infinite flag manifolds, Comm. Math. Phys., 128 (1990), 161–189.

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Feigin and E. Frenkel, Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras, in A. Tsuchiya, T. Eguchi, and M. Jimbo, eds., Infinite Analysis, Advanced Series in Mathematical Physics, Vol. 16, World Scientific, Singapore, 1992, 197–215.

    Google Scholar 

  23. E. Frenkel, Wakimoto modules, opers and the center at the critical level, Adv. Math., 195 (2005), 297–404.

    Article  MATH  MathSciNet  Google Scholar 

  24. E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, 2nd ed., Mathematical Surveys and Monographs, Vol. 88, American Mathematical Society, Providence, RI, 2004.

    MATH  Google Scholar 

  25. E. Frenkel and D. Gaitsgory, D-modules on the affine Grassmannian and representations of affine Kac-Moody algebras, Duke Math. J., 125 (2004), 279–327.

    Article  MATH  MathSciNet  Google Scholar 

  26. E. Frenkel, D. Gaitsgory, and K. Vilonen, Whittaker patterns in the geometry of moduli spaces of bundles on curves, Ann. Math., 153 (2001), 699–748.

    Article  MATH  MathSciNet  Google Scholar 

  27. E. Frenkel and K. Teleman, Self-extensions of Verma modules and differential forms on opers, Compositio Math., 142 (2006), 477–500.

    Article  MATH  MathSciNet  Google Scholar 

  28. D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math., 144 (2001), 253–280.

    Article  MATH  MathSciNet  Google Scholar 

  29. D. Gaitsgory, The notion of category over an algebraic stack, math.AG/0507192, 2005.

    Google Scholar 

  30. D. Gaitsgory, Notes on Bezrukavnikov’s theory, in preparation.

    Google Scholar 

  31. V. Gorbounov, F. Malikov, and V. Schechtman, On chiral differential operators over homogeneous spaces, Internat. J. Math. Math. Sci., 26 (2001), 83–106.

    Article  MATH  MathSciNet  Google Scholar 

  32. V. Kac and D. Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, Adv. Math., 34 (1979), 97–108.

    Article  MATH  MathSciNet  Google Scholar 

  33. B. Kostant, Lie group representations on polynomial rings, Amer. J. Math., 85 (1963), 327–402.

    Article  MATH  MathSciNet  Google Scholar 

  34. R. P. Langlands, Problems in the theory of automorphic forms, in Lectures in Modern Analysis and Applications III, Lecture Notes in Mathematics, Vol. 170, Springer-Verlag, Berlin, New York, Heidelberg, 1970, 18–61.

    Google Scholar 

  35. G. Laumon, Transformation de Fourier, constantes d’équations fonctionelles et conjecture de Weil, Publ. I.H.E.S., 65 (1987), 131–210.

    MATH  MathSciNet  Google Scholar 

  36. K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, London Mathematical Society Lecture Note Series, Vol. 124, Cambridge University Press, Cambridge, UK, 1987.

    MATH  Google Scholar 

  37. I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, math.RT/0401222, 2004.

    Google Scholar 

  38. D. Vogan, Local Langlands correspondence, in Representation Theory of Groups and Algebras, Contemporary Mathematics, Vol. 145, American Mathematical Society, Providence, RI, 1993, 305–379.

    Google Scholar 

  39. A. Voronov, Semi-infinite induction and Wakimoto modules, Amer. J. Math., 121 (1999), 1079–1094.

    Article  MATH  MathSciNet  Google Scholar 

  40. M. Wakimoto, Fock representations of affine Lie algebra A (1)1 , Comm. Math. Phys., 104 (1986), 605–609.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Vladimir Drinfeld on his 50th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Frenkel, E., Gaitsgory, D. (2006). Local geometric Langlands correspondence and affine Kac-Moody algebras. In: Ginzburg, V. (eds) Algebraic Geometry and Number Theory. Progress in Mathematics, vol 253. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4532-8_3

Download citation

Publish with us

Policies and ethics