Skip to main content

On the Euler-Kronecker constants of global fields and primes with small norms

  • Chapter

Part of the book series: Progress in Mathematics ((PM,volume 253))

Abstract

Let K be a global field, i.e., either an algebraic number field of finite degree (abbreviated NF), or an algebraic function field of one variable over a finite field (FF). Let ζK(s) be the Dedekind zeta function of K, with the Laurent expansion at s = 1:

$$ \zeta _K \left( s \right) = c_{ - 1} \left( {s - 1} \right)^{ - 1} + c_0 + c_1 \left( {s - 1} \right) + \cdots \left( {c_{ - 1} \ne 0} \right) $$
(0.1)

In this paper, we shall present a systematic study of the real number

$$ \gamma _K = {{c_0 } \mathord{\left/ {\vphantom {{c_0 } {c_{ - 1} }}} \right. \kern-\nulldelimiterspace} {c_{ - 1} }} $$
(0.2)

attached to each K, which we call the Euler-Kronecker constant (or invariant) of K. When K = ℚ (the rational number field), it is nothing but the Euler-Mascheroni constant

$$ \gamma _\mathbb{Q} = \mathop {\lim }\limits_{n \to \infty } \left( {1 + \frac{1} {2} + \cdots + \frac{1} {n} - \log n} \right) = 0.57721566..., $$

and when K is imaginary quadratic, the well-known Kronecker limit formula expresses γ K in terms of special values of the Dedekind η function. This constant γ K appears here and there in several articles in analytic number theory, but as far as the author knows, it has not played a main role nor has it been systematically studied. We shall consider γ K more as an invariant of K.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. G. Drinfeld and S. G. Vlăduţ, On the number of points of algebraic curves, Functional Anal., 17 (1983), 68–69 (inRussian).

    Article  Google Scholar 

  2. N. Elkies, E. Howe, A. Kresch, B. Poonen, J. Wetherell, and M. Zieve, Curves of every genus with many points II: Asymptotically good families, Duke Math. J., 122 (2004), 399–422.

    Article  MATH  MathSciNet  Google Scholar 

  3. K. Győry, Discriminant form and index form equations, in F. Halter-Koch and R. F. Tichy, eds., Algebraic Number Theory and Diophantine Analysis, Walter De Gruyter, Berlin, New York, 2000, 191–214.

    Google Scholar 

  4. A. Granville and H. M. Stark, ABC implies no “Siegel zeros” for L-functions of characters with negative discriminant, Invent. Math., 139 (2000), 509–523.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Hecke, Über die Kroneckersche Grenzformel für reelle Quadratische Körper und die Klassenzahl relativ-abelscher Körper, Verh. Naturf. Ges. Basel, 28 (1917), 363–372.; also in Mathematische Werke, 2nd ed., Vandenhoeck and Ruprecht, Göttingen, the Netherlands, 1970, 198–207.

    Google Scholar 

  6. Y. Hashimoto, Y. Iijima, N. Kurokawa, and M. Wakayama, Euler’s constants for the Selberg and the Dedekind zeta functions, Bull. Belgian Math. Soc., 11-4 (2004), 493–516.

    MATH  MathSciNet  Google Scholar 

  7. [I1]_Y. Ihara, The congruence monodromy problems, J. Math. Soc. Japan, 20 (1968), 107–121.

    Article  MATH  MathSciNet  Google Scholar 

  8. [I2]_Y. Ihara, Shimura curves over finite fields and their rational points, Contemp. Math., 245 (1999), 15–23.

    MathSciNet  Google Scholar 

  9. J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, in A. Fröhlich, ed., Algebraic Number Fields: Proceedings of the 1975 Durham Symposium, Academic Press, London, New York, 1977, 409–464.

    Google Scholar 

  10. S. Lang, Algebraic Number Theory, Addison-Wesley, Reading, MA, 1970.

    MATH  Google Scholar 

  11. H.W. Lenstra, Jr., Miller’s primality test, Inform. Process. Lett., 8 (1979), 86–88.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. E. Littlewood, On the class-number of the corpus \( P\left( {\sqrt { - k} } \right) \), Proc. London Math. Soc. Ser. 2, 27 (1928}), 358–372; also in Collected Papers, Vol. II, Oxford University Press, Oxford, UK, 920–

    Article  MathSciNet  Google Scholar 

  13. I. Schur, Über die Verteilung derWurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z., 1 (1918), 377–402; also in Gesammelte Abhandlungen, Vol. II, Springer-Verlag, Berlin, 1973, number 32, 213–238.

    Article  MathSciNet  Google Scholar 

  14. H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math., 23 (1974), 135–152.

    Article  MATH  MathSciNet  Google Scholar 

  15. [Ts1]_M. A. Tsfasman, Some remarks on the asymptotic number of points, in Coding Theory and Algebraic Geometry (Luminy, 1991), Lecture Notes in Mathematics, Vol. 1518, Springer-Verlag, Berlin, 1992, 178–192.

    Chapter  Google Scholar 

  16. [Ts2]_M. A. Tsfasman, Asymptotic behavior of the Euler-Kronecker constant, in V. Ginzburg, ed., Algebraic Geometry and Number Theory: In Honor of Vladimir Drinfeld’s 50th Birthday, Progress in Mathematics, Vol. 850, Birkhäuser Boston, Cambridge, MA, 2006, 453–458 (this volume).

    Google Scholar 

  17. M. A. Tsfasman and S. G. Vlăduţ, Infinite global fields and the generalized Brauer-Siegel theorem, Moscow Math. J., 2 (2002), 329–402.

    MATH  Google Scholar 

  18. M. A. Tsfasman, S. G. Vlăduţ, and Th. Zink, Modular curves, Shimura curves, and Goppa codes better than the Varshamov-Gilbert bound, Math. Nachr., 109 (1982), 21–28.

    Article  MATH  MathSciNet  Google Scholar 

  19. [W1]_A. Weil, Sur les “formules explicites” de la théorie des nombres premiers, Comm. Sém. Math. Lund, Suppl. vol. (1952), 252–265; also in Collected Works, Vol. 2, 48–62.

    Google Scholar 

  20. [W2]_A. Weil, Sur les formules explicites de la théorie des nombres, Izv. Akad. Nauk SSSR Ser. Mat., 36 (1972), 3–18; also in Collected Works, Vol. 3, 249–264 (in French).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to V. Drinfeld.

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Ihara, Y. (2006). On the Euler-Kronecker constants of global fields and primes with small norms. In: Ginzburg, V. (eds) Algebraic Geometry and Number Theory. Progress in Mathematics, vol 253. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4532-8_5

Download citation

Publish with us

Policies and ethics