Skip to main content

Multiplicity-free Theorems of the Restrictions of Unitary Highest Weight Modules with respect to Reductive Symmetric Pairs

  • Chapter
Book cover Representation Theory and Automorphic Forms

Part of the book series: Progress in Mathematics ((PM,volume 255))

Summary

The complex analytic methods have found a wide range of applications in the study of multiplicity-free representations. This article discusses, in particular, its applications to the question of restricting highest weight modules with respect to reductive symmetric pairs. We present a number of multiplicity-free branching theorems that include the multiplicity-free property of some of known results such as the Clebsh–Gordan–Pieri formula for tensor products, the Plancherel theorem for Hermitian symmetric spaces (also for line bundle cases), the Hua–Kostant–Schmid K-type formula, and the canonical representations in the sense of Vershik–Gelfand–Graev. Our method works in a uniform manner for both finite and infinite dimensional cases, for both discrete and continuous spectra, and for both classical and exceptional cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alikawa H, Multiplicity free branching rules for outer automorphisms of simple Lie algebras, (2007) J. Math. Soc. Japan 59:151–177

    MATH  MathSciNet  Google Scholar 

  2. van den Ban EP (1987), Invariant differential operators on a semisimple symmetric space and finite multiplicities in a Plancherel formula. Ark. Mat. 25:175–187

    Article  MATH  MathSciNet  Google Scholar 

  3. van den Ban EP, Schlichtkrull H (1997), The most continuous part of the Plancherel decomposition for a reductive symmetric space. Ann. of Math. 145:267–364

    Article  MATH  MathSciNet  Google Scholar 

  4. Barbasch D, The spherical unitary dual of split and p-adic groups, preprint

    Google Scholar 

  5. Ben Saïd, S (2002), Weighted Bergman spaces on bounded symmetric domains. Pacific J. Math. 206:39–68

    Article  MATH  MathSciNet  Google Scholar 

  6. Berger M (1957), Les espaces symétriques non-compacts. Ann. Sci. École Norm. Sup. (3) 74:85–177

    Google Scholar 

  7. Bertram W, Hilgert J (1998), Hardy spaces and analytic continuation of Bergman spaces. Bull. Soc. Math. France 126:435–482

    MATH  MathSciNet  Google Scholar 

  8. Delorme P (1998), Formule de Plancherel pour les espaces symétriques réductifs. Ann. of Math. 147:417–452

    Article  MATH  MathSciNet  Google Scholar 

  9. van Dijk G (1999), Canonical representations associated to hyperbolic spaces. II. Indag. Math. 10:357–368

    Article  MATH  MathSciNet  Google Scholar 

  10. van Dijk G, Hille SC (1997), Canonical representations related to hyperbolic spaces. J. Funct. Anal. 147:109–139

    Article  MATH  MathSciNet  Google Scholar 

  11. van Dijk G, Pevzner M (2001), Berezin kernels of tube domains. J. Funct. Anal. 181:189–208

    Article  MATH  MathSciNet  Google Scholar 

  12. Enright T, Howe R, Wallach N (1983), A classification of unitary highest weight modules. In Representation theory of reductive groups, Progr. Math. 40:97–143, Birkhäuser

    MathSciNet  Google Scholar 

  13. Enright T, Joseph A (1990), An intrinsic classification of unitary highest weight modules. Math. Ann. 288:571–594

    Article  MATH  MathSciNet  Google Scholar 

  14. Faraut J, Ólafsson G (1995), Causal semisimple symmetric spaces, the geometry and harmonic analysis. Semigroups in Algebra, Geometry and Analysis, Walter de Gruyter 3–32

    Google Scholar 

  15. Faraut J, Thomas E (1999), Invariant Hilbert spaces of holomorphic functions. J. Lie Theory 9:383–402

    MATH  MathSciNet  Google Scholar 

  16. Flensted-Jensen M (1980), Discrete series for semisimple symmetric spaces. Ann. of Math. 111:253–311

    Article  MathSciNet  Google Scholar 

  17. Gelfand IM (1950), Spherical functions on symmetric spaces. Dokl. Akad. Nauk. SSSR 70:5–8

    Google Scholar 

  18. Gutkin E (1979), Coefficients of Clebsch-Gordan for the holomorphic discrete series. Lett. Math. Phys. 3:185–192

    Article  MATH  MathSciNet  Google Scholar 

  19. Harish-Chandra (1953), (1954), Representations of semi-simple Lie groups. I, III. Trans. Amer. Math. Soc. 75:185–243; 76:234–253; (1955) IV. Amer. J. Math. 77:743–777

    Google Scholar 

  20. Heckman G, Schlichtkrull H (1994), Harmonic analysis and special functions on symmetric spaces. Perspectives in Mathematics 16, Academic Press

    Google Scholar 

  21. Helgason S (1970), (1976), A duality for symmetric spaces with applications to group representations. I, II. Adv. Math. 5:1–154; 22:187–219

    Google Scholar 

  22. Hilgert J, Reproducing kernels in representation theory, in prepration

    Google Scholar 

  23. Howe R (1983), Reciprocity laws in the theory of dual pairs. Representation Theory of Reductive Groups, Trombi PC (ed), Progr. Math. 40:159–175, Birkhäuser

    MathSciNet  Google Scholar 

  24. Howe R (1989), Transcending classical invariant theory. J. Amer. Math. Soc. 2:535–552

    Article  MATH  MathSciNet  Google Scholar 

  25. Howe R (1995), Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. Israel Math. Conf. Proc. 8:1–182

    MathSciNet  Google Scholar 

  26. Hua LK (1963), Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Amer. Math. Soc.

    Google Scholar 

  27. Jaffee H (1975), Real forms of Hermitian symmetric spaces. Bull. Amer. Math. Soc. 81:456–458

    Article  MATH  MathSciNet  Google Scholar 

  28. Jaffee H (1978), Anti-holomorphic automorphisms of the exceptional symmetric domains. J. Differential Geom. 13:79–86

    MATH  MathSciNet  Google Scholar 

  29. Jakobsen HP (1979), Tensor products, reproducing kernels, and power series. J. Funct. Anal. 31:293–305

    Article  MATH  MathSciNet  Google Scholar 

  30. Jakobsen HP (1983), Hermitian symmetric spaces and their unitary highest weight modules. J. Funct. Anal. 52:385–412

    Article  MATH  MathSciNet  Google Scholar 

  31. Jakobsen HP, Vergne M (1979), Restrictions and expansions of holomorphic representations. J. Funct. Anal. 34:29–53

    Article  MATH  MathSciNet  Google Scholar 

  32. Johnson K (1980), On a ring of invariant polynomials on a Hermitian symmetric space. J. Algebra 67:72–81

    Article  MATH  MathSciNet  Google Scholar 

  33. Kashiwara M, Vergne M (1978), On the Segal–Shale–Weil representations and harmonic polynomials. Invent. Math. 44:1–47

    Article  MATH  MathSciNet  Google Scholar 

  34. Kobayashi S (1968), Irreducibility of certain unitary representations. J. Math. Soc. Japan 20:638–642

    Article  MATH  MathSciNet  Google Scholar 

  35. Kobayashi S, Nagano T (1964), On filtered Lie algebras and geometric structures I. J. Math. Mech. 13:875–908

    MATH  MathSciNet  Google Scholar 

  36. Kobayashi T (1989), Unitary representations realized in L2-sections of vector bundles over semisimple symmetric spaces. Proceedings of the Joint Symposium of Real Analysis and Functional Analysis (cosponsored by the Mathematical Society of Japan), 39–54, in Japanese

    Google Scholar 

  37. Kobayashi T (1992), A necessary condition for the existence of compact Clifford-Klein forms of homogeneous spaces of reductive type. Duke Math. J. 67:653–664

    Article  MATH  MathSciNet  Google Scholar 

  38. Kobayashi T (1994), Discrete decomposability of the restriction of Aq(λ) with respect to reductive subgroups and its applications. Invent. Math. 117:181–205

    Article  MATH  MathSciNet  Google Scholar 

  39. Kobayashi T (1997), Multiplicity free theorem in branching problems of unitary highest weight modules. Proceedings of the Symposium on Representation Theory held at Saga, Kyushu 1997, Mimachi K (ed), 9–17

    Google Scholar 

  40. Kobayashi T (1998), Discrete decomposability of the restriction of Aq(λ) with respect to reductive subgroups, Part II — micro-local analysis and asymptotic K-support. Ann. of Math. 147:709–729

    Article  MATH  MathSciNet  Google Scholar 

  41. Kobayashi T (1998), Discrete decomposability of the restriction of Aq(λ) with respect to reductive subgroups, Part III — restriction of Harish-Chandra modules and associated varieties. Invent. Math. 131:229–256

    Article  MATH  MathSciNet  Google Scholar 

  42. Kobayashi T (1998), Discrete series representations for the orbit spaces arising from two involutions of real reductive Lie groups. J. Funct. Anal. 152:100–135

    Article  MATH  MathSciNet  Google Scholar 

  43. Kobayashi T (2000), Discretely decomposable restrictions of unitary representations of reductive Lie groups — examples and conjectures. Adv. Stud. Pure Math., Analysis on Homogeneous Spaces and Representation Theory of Lie Groups, Okayama–Kyoto, 26:98–126

    Google Scholar 

  44. Kobayashi T (2000), Multiplicity-free restrictions of unitary highest weight modules for reductive symmetric pairs, UTMS Preprint Series 2000–1, University of Tokyo, Mathematical Sciences, 39 pages

    Google Scholar 

  45. Kobayashi T (2002), Branching problems of unitary representations. Proc. I.C.M. 2002, Beijing, vol. 2, Higher Ed. Press, Beijing, 615–627

    Google Scholar 

  46. Kobayashi T (2004), Geometry of multiplicity-free representations of GL(n), visible actions on flag varieties, and triunity. Acta Appl. Math. 81:129–146

    Article  MATH  MathSciNet  Google Scholar 

  47. Kobayashi T (2005), Multiplicity-free representations and visible actions on complex manifolds. Publ. Res. Inst. Math. Sci. 41:497–549

    Article  MATH  MathSciNet  Google Scholar 

  48. Kobayashi T (2005), Theory of discretely decomposable restrictions of unitary representations of semisimple Lie groups and some applications. Sugaku Expositions 18:1–37, Amer. Math. Soc.

    MathSciNet  MATH  Google Scholar 

  49. Kobayashi T, Propagation of multiplicity-free property for holomorphic vector bundles, math. RT/0607004

    Google Scholar 

  50. Kobayashi T (2007), Visible actions on symmetric spaces, to appear in Transformation Group 12, math. DE/0607005

    Google Scholar 

  51. Kobayashi T (2007), A generalized Cartan decomposition for the double coset space (U(n1) × U(n2) × U(n3))∖ U(n)/(U(p) × U(q)), J. Math Soc. Japan 59:669–691

    MATH  MathSciNet  Google Scholar 

  52. Kobayashi T, Visible actions on flag varieties of SO(n) and multiplicity-free representations, preprint.

    Google Scholar 

  53. Kobayashi T, Nasrin S (2003), Multiplicity one theorem in the orbit method. Lie Groups and Symmetric Spaces: In memory of F. I. Karpelevič, S. Gindikin (ed), Translation Series 2, Amer. Math. Soc. 210:161–169

    MathSciNet  Google Scholar 

  54. Kobayashi T, Ørsted B (2003), Analysis on the minimal representation of O(p, q). II. Branching laws. Adv. Math. 180:513–550

    Article  MATH  MathSciNet  Google Scholar 

  55. Koike K, Terada I (1987), Young diagrammatic methods for the representation theory of the classical groups of type Bn, Cn, Dn. J. Algebra 107:466–511

    Article  MATH  MathSciNet  Google Scholar 

  56. Koike K, Terada I (1990), Young diagrammatic methods for the restriction of representations of complex classical Lie groups to reductive subgroups of maximal rank. Adv. Math. 79:104–135

    Article  MATH  MathSciNet  Google Scholar 

  57. Korányi A, Wolf JA (1965), Realization of Hermitian symmetric spaces as generalized half-planes. Ann. of Math. 81:265–285

    Article  MathSciNet  Google Scholar 

  58. Krattenthaler C (1998), Identities for classical group characters of nearly rectangular shape. J. Algebra 209:1–61

    Article  MATH  MathSciNet  Google Scholar 

  59. Lang S (1998), SL2(R). Springer

    Google Scholar 

  60. Lipsman R (1979), On the unitary representation of a semisimple Lie group given by the invariant integral on its Lie algebra. Adv. Math. Suppl. 6:143–158; (1977) II, Canad. J. Math. 29:1217–1222

    Google Scholar 

  61. Littelmann P (1994), On spherical double cones. J. Algebra 166:142–157

    Article  MATH  MathSciNet  Google Scholar 

  62. Macdonald IG (1997), Symmetric Functions and Hall Polynomials. Oxford University Press

    Google Scholar 

  63. Martens S (1975), The characters of the holomorphic discrete series. Proc. Natl. Acad. Sci. USA 72:3275–3276

    Article  MATH  MathSciNet  Google Scholar 

  64. Molchanov VF (1980), Tensor products of unitary representations of the threedimensional Lorentz group. Math. USSR, Izv. 15:113–143

    Article  MATH  Google Scholar 

  65. Neeb K-H (1997), On some classes of multiplicity free representations. Manuscripta Math. 92:389–407

    Article  MATH  MathSciNet  Google Scholar 

  66. Neretin YA (2002), Plancherel formula for Berezin deformation of L2 on Riemannian symmetric space. J. Funct. Anal. 189:336–408

    Article  MATH  MathSciNet  Google Scholar 

  67. Neretin YA, Ol’shanski$ı$ GI (1997), Boundary values of holomorphic functions, singular unitary representations of the groups O(p, q) and their limits as q → ∞ . J. Math. Sci. (New York) 87:3983–4035

    Article  Google Scholar 

  68. Okada S (1998), Applications of minor summation formulas to rectangular-shaped representations of classical groups. J. Algebra 205:337–367

    Article  MATH  MathSciNet  Google Scholar 

  69. Ólafsson G, Ørsted B (1996), Generalizations of the Bargmann transform. Lie Theory and Its Application in physics (Clausthal, 1995) Dobrev and Döbner (eds), World Scientific 3–14

    Google Scholar 

  70. Ørsted B, Zhang G (1997), Tensor products of analytic continuations of holomorphic discrete series. Canad. J. Math. 49:1224–1241

    MATH  MathSciNet  Google Scholar 

  71. PevsnerM(1996), Espace de Bergman d’un semi-groupe complexe. C. R. Acad. Sci. Paris Sér. I Math. 322:635–640

    Google Scholar 

  72. Pevzner M (2005), Représentations des groupes de Lie conformes et quantification des espaces symétriques. Habilitation, l’université de Reims, 36pp.

    Google Scholar 

  73. Proctor RA (1983), Shifted plane partitions of trapezoidal shape. Proc. Amer. Math. Soc. 89:553–559

    Article  MATH  MathSciNet  Google Scholar 

  74. Repka J (1979), Tensor products of holomorphic discrete series representations. Canad. J. Math. 31:836–844

    MATH  MathSciNet  Google Scholar 

  75. Richardson R, Röhrle G, Steinberg R (1992), Parabolic subgroup with abelian unipotent radical. Invent. Math. 110:649–671

    Article  MATH  MathSciNet  Google Scholar 

  76. Rossmann W (1979), The structure of semisimple symmetric spaces. Canad. J. Math. 31:156–180

    MathSciNet  Google Scholar 

  77. Sato F (1993), On the stability of branching coefficients of rational representations of reductive groups. Comment. Math. Univ. St. Paul 42:189–207

    MATH  MathSciNet  Google Scholar 

  78. Schmid W (1969–70), Die Randwerte holomorphe Funktionen auf hermetisch symmetrischen Raumen. Invent. Math. 9:61–80

    Article  Google Scholar 

  79. Shimeno N (1994), The Plancherel formula for spherical functions with a onedimensional K-type on a simply connected simple Lie group of Hermitian type. J. Funct. Anal. 121:330–388

    Article  MATH  MathSciNet  Google Scholar 

  80. Stembridge JR (1990), Hall–Littlewood functions, plane partitions, and the Rogers–Ramanujan identities. Trans. Amer. Math. Soc. 319:469–498

    Article  MATH  MathSciNet  Google Scholar 

  81. Stembridge JR (2001), Multiplicity-free products of Schur functions. Ann. Comb. 5:113–121

    Article  MATH  MathSciNet  Google Scholar 

  82. Vinberg ÉB (2001), Commutative homogeneous spaces and co-isotropic symplectic actions. Russian Math. Surveys 56:1–60

    Article  MATH  MathSciNet  Google Scholar 

  83. Vinberg ÉB, Kimelfeld BN (1978), Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups. Funct. Anal. Appl. 12:168–174

    Article  MATH  MathSciNet  Google Scholar 

  84. Vogan, Jr. D (1979), The algebraic structure of the representation of semisimple Lie groups. I. Ann. of Math. 109:1–60

    Article  MathSciNet  Google Scholar 

  85. Vogan, Jr. D (1981), Representations of Real Reductive Lie groups. Progr. Math. 15, Birkhäuser

    Google Scholar 

  86. Vogan, Jr. D (1987), Unitary Representations of Reductive Lie Groups. Ann. Math. Stud. 118, Princeton University Press

    Google Scholar 

  87. Wallach N (1988), Real Reductive Groups I, Academic Press

    Google Scholar 

  88. Wolf J (1980), Representations that remain irreducible on parabolic subgroups. Differential Geometrical Methods in Mathematical Physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), pp. 129–144, Lecture Notes in Math. 836, Springer

    Google Scholar 

  89. Xie J (1994), Restriction of discrete series of SU(2, 1) × to S(U(1) × U(1, 1)). J. Funct. Anal. 122:478–518

    Article  MATH  MathSciNet  Google Scholar 

  90. Yamashita H, Wachi A, Isotropy representations for singular unitary highest weight modules, in preparation.

    Google Scholar 

  91. Zhang G (2001), Tensor products of minimal holomorphic representations. Represent. Theory 5:164–190

    Article  MATH  MathSciNet  Google Scholar 

  92. Zhang G (2002), Branching coefficients of holomorphic representations and Segal-Bargmann transform. J. Funct. Anal. 195:306–349

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Boston

About this chapter

Cite this chapter

Kobayashi, T. (2008). Multiplicity-free Theorems of the Restrictions of Unitary Highest Weight Modules with respect to Reductive Symmetric Pairs. In: Kobayashi, T., Schmid, W., Yang, JH. (eds) Representation Theory and Automorphic Forms. Progress in Mathematics, vol 255. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4646-2_3

Download citation

Publish with us

Policies and ethics