Skip to main content

On Linnik and Selberg’s Conjecture About Sums of Kloosterman Sums

  • Chapter
  • First Online:
Algebra, Arithmetic, and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 270))

Summary

We examine the Linnik and Selberg Conjectures concerning sums of Kloosterman sums, in all its aspects (x, m and n). We correct the precise form of the Conjecture and establish an analogue of Kuznetzov’s 1/6 exponent in the mn aspect. This, perhaps somewhat surprisingly, is connected with the transional ranges associated with asymptotics of Bessel Functions of large order.

2000 Mathematics Subject Classifications: 11Fxx, 11Lxx

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Deshouillers and H. Iwaniec, “Kloosterman sums and Fourier coefficients of cusp forms,” Invent. Math., 70 (1982/83), no. 2, 219–288.

    Article  MathSciNet  Google Scholar 

  2. P. Deligne, La conjecture de Weil. I (French), Inst. Hautes Études Sci. Publ. Math, 43 (1974), 273–307.

    Article  MathSciNet  Google Scholar 

  3. T.M. Dunster, “Bessel functions of purely imaginary order with applications to second order linear differential equations,” Siam Jnl. Math. Anal., 21, No. 4 (1990).

    Google Scholar 

  4. D. Goldfeld and P. Sarnak, “Sums of Kloosterman sums,” Invent. Math., 71 (1983), no. 2, 243–250.

    Article  MATH  MathSciNet  Google Scholar 

  5. M.N. Huxley, “Introduction to Kloosertmania” in Banach Center Publications, Vol. 17 (1985), Polish Scientific Publishers.

    Google Scholar 

  6. H. Iwaniec, “Introduction to the spectral theory of automorphic forms,” AMS (2002).

    Google Scholar 

  7. H. Iwaniec and F. Kowalski, “Analytic Number Theory,” AMS, Coll. Publ., Vol. 53 (2004).

    Google Scholar 

  8. H. Iwaniec, W. Luo and P. Sarnak, “Low lying zeros of families of L-functions,” Inst. Hautes Études Sci. Publ. Math., 91, (2000), 55–131 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  9. N. Katz, “Gauss Sums, Kloosterman Sums and Monodromy,” P.U. Press (1988).

    Google Scholar 

  10. H. Kim and F. Shahidi, “Functional products for GL2 ×GL3 and the symmetric cube for GL2,” Annals of Math. (2), 155, no. 3 (2002), 837–893.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Kim and P. Sarnak, Appendix to Kim’s paper, “Functoriality for the exterior square of GL4 and the symmetric fourth of GL2, J. Amer. Math. Soc., 16 (2003), no. 1, 139–183.

    Article  MATH  MathSciNet  Google Scholar 

  12. N. Kuznetzov, “The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums,” Mat. Sb. (N.S), 111 (1980), 334–383, Math. USSR-Sb., 39 (1981), 299–342.

    Google Scholar 

  13. P. Lax and R. Phillips, “The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces,” Jnl Funct. Anal., 46, (1982), no. 3, 280–350.

    Article  MATH  MathSciNet  Google Scholar 

  14. Y. Linnik, “Additive problems and eigenvalues of the modular operators,” (1963), Proc. Internat. Congr. Mathematicians (Stockholm, 1962), 270–284.

    Google Scholar 

  15. W. Luo, Z. Rudnick, and P. Sarnak, “On Selberg’s eigenvalue conjecture,” Geom. Funct. Anal., 5 (1995), no. 2, 387–401.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Michel,“Autour de la conjecture de Sato-Tate pour les sommes de Kloosterman. I” (French) [“On the Sato-Tate conjecture for Kloosterman sums. I”], Invent. Math., 121 (1995), no. 1, 61–78.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Murty, in “Lectures on Automorphic L-functions,” Fields Institute Monographs, vol. 20 (2004).

    Google Scholar 

  18. F.W.J. Olver, “The asymptotic expansion of Bessel functions of large order,”Philos. Trans. Royal Soc. London. Ser A, 247 (1954), 328–368.

    Article  MathSciNet  Google Scholar 

  19. P. Sarnak, “Notes on the Generalized Ramanujan Conjectures,” Clay Math. Proc., Vol. 4, (2005), 659–685.

    MathSciNet  Google Scholar 

  20. A. Selberg, “On the estimation of Fourier coefficients of modular forms,” Proc. Sympos. Pure Math., 8, (1965), 1–15.

    MathSciNet  Google Scholar 

  21. G. Watson, “A treatise on the Theory of Bessel Functions,” Cambridge Press (1966).

    Google Scholar 

  22. A. Weil, “On some exponential sums,” Proc. Nat. Acad. Sci., U.S.A., 34, (1948), 204–207.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sarnak .

Editor information

Editors and Affiliations

Additional information

Dedicated to Y. Manin on the Occasion of his 70th Birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sarnak, P., Tsimerman, J. (2009). On Linnik and Selberg’s Conjecture About Sums of Kloosterman Sums. In: Tschinkel, Y., Zarhin, Y. (eds) Algebra, Arithmetic, and Geometry. Progress in Mathematics, vol 270. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4747-6_20

Download citation

Publish with us

Policies and ethics