Skip to main content

Holomorphic Quantization and Unitary Representations of the Teichmüller Group

  • Chapter
Lie Theory and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 123))

Abstract

One of the purposes of geometric quantization (in the sense of Kostant) is to associate in some intrinsic way a finite-dimensional Hilbert space E to a compact symplectic manifold (M, ω) such that \( 2\pi \sqrt {{ - 1}} .\omega \) is the curvature of a connection ∇ on some line bundle L. It is usually assumed that M is simply-connected, since then the pair (L, ∇) is unique up to isomorphism, as was shown in [Ko]. In case there is a finite-dimensional Lie group G of symplectomorphisms present, a central extension \( \mathop{G}\limits^{ \sim } \) of G was constructed by Kostant [Ko], and this central extension should act on E. Thus Kostant was able to recover the Borel-Weil-Bott theorem from the action of a compact Lie group G on a quantizable coadjoint orbit.

Each author was supported in part by a grant from the NSF.

Dedicated to Bert Kostant with admiration

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Axelrod, P. Delia Pietra, and E. Witten, Geometric quantization of Chern-Simons gauge theory, J. Diff. Geom. 33 (1991), 787–902.

    MATH  Google Scholar 

  2. M. F. Atiyah and R. Bott, The Yang—Mills equations over Riemann surfaces, Phil. Trans. Roy. Soc. London A 308 (1982), 523–615.

    MathSciNet  Google Scholar 

  3. L. Alvarez-Gaumé, C. Gomez, G. Moore, and C. Vafa, Strings in the operator formalism, Nucl. Phys. B 303 (1988), 455–521.

    Article  Google Scholar 

  4. A. A. Beilinson, Higher regulators and values of L-functions, J. Soviet Math. 30 (1985), 2036–2070.

    Article  MATH  Google Scholar 

  5. A. A. Beilinson and D. Kazhdan, Flat projective connections, preprint (1991).

    Google Scholar 

  6. S. Bloch, The dilogarithm and extensions of Lie algebras, Algebraic K-Theory, Proceedings Evanston, Lect. Notes in Math. vol. 854 (1981), 141–167.

    Article  MathSciNet  Google Scholar 

  7. A. A. Beilinson and V. Ginsburg, Resolution of diagonals, homotopy algebras and moduli spaces, preprint (1993).

    Google Scholar 

  8. L. Bers, Spaces of Degenerating Riemann surfaces, Discontinuous Groups and Riemann Surfaces, Princeton University Press, (1974).

    Google Scholar 

  9. R. K. Brylinski and B. Kostant, Minimal representations, geometric quantization and unitarity, PNAS USA 91 (1994), 6026–6029.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Beauville and Y. Laszlo, Conformal blocks and generalized theta functions, preprint (1993).

    Google Scholar 

  11. A. Beilinson and V. Schekhtman, Determinant bundles and Virasoro algebras, Commun. Math. Phys. 118 (1988), 651–701.

    Article  MATH  Google Scholar 

  12. A. Bertram and A. Szenes, Hilbert polynomials of moduli spaces of rank 2 vector bundles II, Topology 32 (1993), 599–609.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Bott and L. Tu, Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, Springer-Verlag (1982).

    Google Scholar 

  14. J-L. Brylinski, Loop groups and non-commutative theta functions, preprint (1989).

    Google Scholar 

  15. J-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Progress in Math. vol. 107, Birkhäuser Boston (1993).

    Google Scholar 

  16. J-L. Brylinski and D. McLaughlin, A geometric construction of the first Pontryagin class, in: Quantum Topology, Series on Knots and Everything vol.3, World Scientific (1993), 209–220.

    Google Scholar 

  17. J-L. Brylinski and D. McLaughlin, The geometry of degree four characteristic classes and of line bundles on loop spaces I, preprint (1992), to appear in Duke Math. Jour.

    Google Scholar 

  18. J-L. Brylinski and D. McLaughlin, Cech cocycles for characteristic classes, preprint (1991).

    Google Scholar 

  19. J-L. Brylinski and D. McLaughlin, The geometry of degree four characteristic classes and of line bundles on loop spaces II, in preparation.

    Google Scholar 

  20. J. Cheeger and J. Simons, Differential characters and geometric invariants, Lect. Notes in Math. vol. 1167 (1985), Springer-Verlag, 50–80.

    Article  MathSciNet  Google Scholar 

  21. S. S. Chern and J. Simons, Characteristic forms and geometric invariants, Ann. Math. 99 (1974), 48–69.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Deligne, Le symbole modéré, Publ. Math. IHES 73 (1991), 147–181.

    MathSciNet  MATH  Google Scholar 

  23. P. Deligne, Le déterminant de la cohomologie, Current Trends in Arithmetical Algebraic Geometry, Contemp. Math. 67 (1987), 93–178.

    Article  MathSciNet  Google Scholar 

  24. J-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent Math. 97 (1989), 53–94.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Daskolopoulos and R. Wentworth, Factorization of rank two theta functions II. Proof of the Verlinde formula, preprint (1993).

    Google Scholar 

  26. E. B. Dynkin, Topological invariants of linear representations of the unitary group, Dokl. Akad. Nauk 85 (1952), 697–699, (in Russian).

    MathSciNet  MATH  Google Scholar 

  27. H. Esnault, Characteristic classes of flat bundles, Topology 27 (1988), 323–352.

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Faltings, Stable G-bundles and projective connections, J. Alg. Geom. 2 (1993), 507–568.

    MathSciNet  MATH  Google Scholar 

  29. G. Faltings, A proof of the Verlinde formula, J. Alg. Geom, (to appear).

    Google Scholar 

  30. J. Giraud, Cohomologie non-Abélienne, Ergeb, der Math. 64 (1971).

    Google Scholar 

  31. R. Godement, Topologie Algébrique et Théorie des Faisceaux, Hermann, 3rd edition (1964).

    Google Scholar 

  32. P. A. Griffiths, Periods of integrals on algebraic manifolds I. Construction and properties of the modular varieties, Amer. J. Math. 90 (1968), 568–626.

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Gillet and C. Soulé, Arithmetic Chow groups and differential characters, Algebraic K-Theory: Connections with Geometry and Topology, Contemp. Math. (1989), 29–68.

    Google Scholar 

  34. N. Hitchin, Flat connections and geometric quantization, Commun. Math. Phys. 131 (1990), 347–380.

    Article  MathSciNet  MATH  Google Scholar 

  35. B. Iversen, Cohomology of Sheaves, Universitext, (1986).

    Book  Google Scholar 

  36. V. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. Math. 126 (1987), 335–388.

    Article  MATH  Google Scholar 

  37. L. Jeffrey and F. Kirwan, Localization for nonabelian group actions, preprint (1992).

    Google Scholar 

  38. N. Kawamoto, Y. Namikawa, A. Tsuchiya, and Y. Yamada, Geometric realization of conformal field theories on Riemann surfaces, Max-Planck- Institut für Mathematik, preprint 87–53 (1987).

    Google Scholar 

  39. F. F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves I: Preliminaries on “det” and “div”, Math. Scand. 39 (1976), 19–55.

    MathSciNet  MATH  Google Scholar 

  40. K. Kodaira, Complex Manifolds and Deformation of Complex Structures, Grundl. der Math. Wiss. 283, Springer-Verlag (1986).

    Google Scholar 

  41. T. Kohno, Topological invariants for 3-manifolds using representations of mapping class groups I, Topology 31 (1992), 203–230.

    Article  MathSciNet  MATH  Google Scholar 

  42. M. I. Kontsevich, Virasoro algebra and the Teichmüller space, Funct. anal. Appl. 21 (2) (1987), (1986) 1565–157.

    Article  MathSciNet  Google Scholar 

  43. B. Kostant, Quantization and unitary representations, in Lect. Notes in Modern Analysis and Applications III, Lect. Notes in Math. vol. 170 (1970), 87–208.

    MathSciNet  Google Scholar 

  44. S. Kumar, M. S. Narasimhan and A. Ramanathan, Infinite grass-mannians and moduli spaces of G-bundles, preprint (1993).

    Google Scholar 

  45. B. Mazur and W. Messing, Universal Extensions and One-Dimensional Crystalline Cohomology, Lect. Notes in Math. vol. 370 (1974).

    Google Scholar 

  46. M. S. Narasimhan and T. R. Ramadas, Factorisation of general theta functions I, Invent. Math. 114 (1993), 565–623.

    Article  MathSciNet  MATH  Google Scholar 

  47. M. S. Narasimhan and C. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. 82 (1965), 540–564.

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Pandharipande, A compactification over \( \overline {{M_g}} \) of the universal family of slope-semistable vector bundles, preprint (1993).

    Google Scholar 

  49. A. Pressley and G. Segal, Loop groups, Clarendon Press (1986).

    MATH  Google Scholar 

  50. D. Quillen, Determinants of Cauchy-Riemann operators over a Riemann surface, Funct. Anal. Appl. (1985), 31–34.

    Google Scholar 

  51. A. Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975), 129–152.

    Article  MathSciNet  MATH  Google Scholar 

  52. N. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Inv. Math. 105 (1991), 547–597.

    Article  MathSciNet  Google Scholar 

  53. G. Segal, The definition of conformal field theory, preprint (1988).

    Google Scholar 

  54. J- P. Serre, Un théorème de dualité, Comment. Math. Helv. 29 (1955), 9–26.

    Article  MathSciNet  MATH  Google Scholar 

  55. A. Szenes, Hilbert polynomials of moduli spaces of rank 2 vector bundles, Topology 32 (1993), 587–597.

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Thaddeus, Stable pairs, linear systems and the Verlinde formula, preprint (1992).

    Google Scholar 

  57. A. Tsuchiya, K. Ueno and Y. Yamada, Conformal field theory on universal family of stable curves with gauge symmetries, Adv. Studies in Pure Math. 19 (1989), 459–565.

    MathSciNet  Google Scholar 

  58. E. Verlinde, Fusion rules and modular transformation in 2d conformal field theory, Nucl. Phys. B 300 (1988), 360–376.

    Article  MathSciNet  Google Scholar 

  59. A. Weil, Variétés Kaehlériennes, Hermann (1957).

    Google Scholar 

  60. A. Weil, On the moduli of Riemann surfaces, Collected Works, [1958b].

    Google Scholar 

  61. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989), 351–399.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brylinski, JL., McLaughlin, D. (1994). Holomorphic Quantization and Unitary Representations of the Teichmüller Group. In: Brylinski, JL., Brylinski, R., Guillemin, V., Kac, V. (eds) Lie Theory and Geometry. Progress in Mathematics, vol 123. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0261-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0261-5_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6685-3

  • Online ISBN: 978-1-4612-0261-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics