Skip to main content

Total Positivity in Reductive Groups

  • Chapter
Lie Theory and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 123))

Abstract

An invertible n×n matrix with real entries is said to be totally ≥0 (resp. totally >0) if all its minors are ≥0 (resp. >0). This definition appears in Schoenberg’s 1930 paper [S] and in the 1935 note [GK] of Gantmacher and Krein. (For a recent survey of totally positive matrices, see [A].)

Supported in part by the National Science Foundation.

Dedicated to Bert Kostant on his 65th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Ando, Totally positive matrices, Linear Alg. Appl. 90 (1987), 165–219.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Bourbaki, Groupes et algèbres de Lie, Ch. 2,3, Hermann, Paris, 1972.

    Google Scholar 

  3. A. Dold, Lectures on algebraic topology, Springer Verlag, 1972.

    MATH  Google Scholar 

  4. M. Fekete and G. Pólya, Über ein Problem von Laguerre, Rendiconti del Circ. Mat. Palermo 34 (1912), 89–120.

    Article  MATH  Google Scholar 

  5. G. Frobenius, Über Matrizen aus nicht negativen Elementen, Sitzungsberichte Preuss. Akad. Wiss. (1912), 456–477.

    Google Scholar 

  6. F. Gantmacher and M. Krein, Sur les matrices oscillatoires, Comptes Rendues Acad. Sci. Paris 201 (1935), 577–579.

    Google Scholar 

  7. F. Gantmacher and M. Krein, Sur les matrices oscillatoires et completement non négatives, Compositio Math. 4 (1937), 445–476.

    MathSciNet  Google Scholar 

  8. B. Kostant, The solution to a generalized Toda lattice and representation theory, Adv. in Math. 34 (1979), 195–338.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Loewner, On totally positive matrices, Math. Z. 63 (1955), 338–340.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447–498.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Lusztig, Introduction to quantum groups, Birkhäuser, Boston, 1993.

    MATH  Google Scholar 

  12. G. Lusztig, Problems on quantum groups, Amer. Math. Soc, Proc. Symp. Pure Math. (1994).

    Google Scholar 

  13. G. Lusztig, Singularities, character formulas and a q—analog of weight multiplicities, Astérisque 101–102 (1983), 208–229.

    MathSciNet  Google Scholar 

  14. O. Perron, Zur theorie der matrizen, Math. Annalen 64 (1907), 248–263.

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Schoenberg, Über variationsvermindernde lineare Transformationen, Math. Z. 32 (1930), 321–322.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. M. Whitney, A reduction theorem for totally positive matrices, J. d’Analyse Math. 2 (1952), 88–92.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lusztig, G. (1994). Total Positivity in Reductive Groups. In: Brylinski, JL., Brylinski, R., Guillemin, V., Kac, V. (eds) Lie Theory and Geometry. Progress in Mathematics, vol 123. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0261-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0261-5_20

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6685-3

  • Online ISBN: 978-1-4612-0261-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics