Skip to main content

Partial-Sum Processes with Random Locations and Indexed by Vapnik-Červonenkis Classes of Sets in Arbitrary Sample Spaces

  • Chapter
Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference

Part of the book series: Progress in Probability ((PRPR,volume 30))

Abstract

The purpose of the present paper is to establish a functional central limit theorem (FCLT) for partial-sum processes with random locations and indexed by Vapnik-Cervonenkis classes (VCC) of sets in arbitrary sample spaces. The context is as follows: Let X = (X,X) be an arbitrary measurable space, (ηj)j∈N be a sequence of independent and identically distributed (i.i.d.) random elements (r.e.) in X with distribution v on X (that is, the η; j ’s are asumed to be defined on some basic probability space (Ω, F, P) with values in X such that each ηj: (Ω, F) → (X,X) is measurable), and let (ξnj)1≤ j j (n),n∈ℕ be a triangular array of rowwise independent (but not necessarily identically distributed) real-valued random variables (r.v.) (also defined on (Ω, F, P)) such that the whole triangular arrray is independent of the sequence (ηj)j∈ℕ. Given a class CX, define a partial-sum process (of sample size nIN) S n = (S n(C))C∈c by

$$S_{n}:=\sum_{j\leq j(n)}I_{C}(\eta_{j})\xi_{nj}, C\in c$$

where I C denotes the indicator function of C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, K.S. and Pyke, R. (1986). A uniform central limit theorem for setindexed partial-sum processes with finite variance. Ann. Probab. 14, 582–597.

    Article  MathSciNet  MATH  Google Scholar 

  • Alexander, K.S. (1987). Central limit theorems for stochastic processes under random entropy conditions. Probab. The. Re. Fields 75, 351–378.

    Article  MATH  Google Scholar 

  • Araujo, A. and Giné (1980). The central limit theorem for real and Banach space valued random variables. Wiley, New York.

    Google Scholar 

  • Assouad, P. (1981). Sur les classes de Vapnik-Cervonenkis. C. R. Acad. Sci. Paris 292 Sér. I 921–924.

    MathSciNet  MATH  Google Scholar 

  • Bass, R. F. and Pyke, R. (1984). Functional law of the iterated logarithm and uniform central limit theorem for partial-sum processes indexed by sets. Ann. Probab. 12, 13–34.

    Article  MathSciNet  MATH  Google Scholar 

  • Dudley, R. M. (1978). Central limit theorems for empirical measures. Ann Probab. 6 899–929. (Correction (1979) ibid. 7 909-911)

    Article  MathSciNet  MATH  Google Scholar 

  • Gaenssler, P. and Schlumprecht, Th. (1988). Maximal inequalities for stochastic processes which are given as sums of independent processses indexed by pseudometric parameter spaces (with applications to empirical processes). Preprint, Univ. of Munich.

    Google Scholar 

  • Gaenssler, P. (1990). On weak convergence of certain processes indexed by pseudometric parameter spaces with applications to empirical processes. Invited paper for the 11th Prague Conference, August 27-31, 1990.

    Google Scholar 

  • Hoffmann-Jørgensen, J. (1984). Convergence of stochastics processes on Polish spaces. Unpublised.

    Google Scholar 

  • Marcus, M. B. and Pisier, G. (1981). Random Fourier series with applications to Harmonic analysis. Ann. Math. Studies 101, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Pollard, D. (1984). Convergence of stochastic processes. Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Pyke, R. (1983). A uniform central limit theorem for partial-sum processes indexed by sets. In Probability, Statistics and Analysis (J. F.C. Kingman and G. R. H. Reuter, eds.) 219–240. Cambridge University Press.

    Google Scholar 

  • Stengle, G. and Yukich, J. E. (1989). Some new Vapnik-Červonenkis classes. Ann. Statist. 17, 1441–1446.

    Article  MathSciNet  MATH  Google Scholar 

  • Vapnik, V.N. and Cervonenkis A. Ja. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory Prob. Appl. 16, 264–280.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arcones, M.A., Gaenssler, P., Ziegler, K. (1992). Partial-Sum Processes with Random Locations and Indexed by Vapnik-Červonenkis Classes of Sets in Arbitrary Sample Spaces. In: Dudley, R.M., Hahn, M.G., Kuelbs, J. (eds) Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference. Progress in Probability, vol 30. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0367-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0367-4_26

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6728-7

  • Online ISBN: 978-1-4612-0367-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics