Skip to main content

Computing Discrepancies Related to Spaces of Smooth Periodic Functions

  • Conference paper

Part of the book series: Lecture Notes in Statistics ((LNS,volume 127))

Abstract

A notion of discrepancy is introduced, which represents the integration error on spaces of r-smooth periodic functions. It generalizes the diaphony and constitutes a periodic counterpart to the classical L2-discrepancy as well as r-smooth versions of it introduced recently by Paskov [Pas93]. Based on previous work [FH96], we develop an efficient algorithm for computing periodic discrepancies for quadrature formulas possessing certain tensor product structures, in particular, for Smolyak quadrature rules (also called sparse grid methods). Furthermore, fast algorithms of computing periodic discrepancies for lattice rules can easily be derived from well—known properties of lattices. On this basis we carry out numerical comparisons of discrepancies between Smolyak and lattice rules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Brass. Quadraturverfahren. Vandenhoeck & Rupprecht, Göttingen, 1977.

    Google Scholar 

  2. K. Frank and S. Heinrich. Computing discrepancies of Smolyak quadrature rules. J. Complexity, 12:287–314, 1996.

    Article  MathSciNet  Google Scholar 

  3. K. Frank. Complexity of local solution of multivariate integral equations. J. Complexity, 11:416–434, 1995.

    Article  MathSciNet  Google Scholar 

  4. I.S. Gradshteyn and I.M. Ryshik. Tables of integrals, series and products. Academic Press, NY, London, 1965.

    Google Scholar 

  5. S. Haber. Parameters for integrating periodic functions of several variables. Math. Comp.,41:115–129, 1983.

    Article  MathSciNet  Google Scholar 

  6. S. Heinrich. Efficient algorithms for computing the L2 discrep-ancy. TR 267–95 Universität Kaiserslautern, 1995. (to appear in Math. Comp.).

    Google Scholar 

  7. E. Hlawka. Zur angenäherten Berechnung mehrfacher Integrale.Monatsh. Math., 66:140–151, 1962.

    Article  MathSciNet  Google Scholar 

  8. N.M. Korobov. Number-Theoretic Methods in Approximate Analysis. Fizmatgiz, Moscow, 1963. (in Russian).

    Google Scholar 

  9. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF 63. SIAM, 1992.

    Book  Google Scholar 

  10. E. Novak and K. Ritter. High dimensional integration of smooth functions over cubes. to appear in Num. Math., 1996.

    Google Scholar 

  11. S.H. Paskov. Average case complexity of multivariate integra-tion for smooth functions. J. Complexity, 9:291–312, 1993.

    Article  MathSciNet  Google Scholar 

  12. I.H. Sloan and J.N. Lyness. The representation of lattice quadratures as multiple sums. Math. Comp., 52:81–94, 1989.

    Article  MathSciNet  Google Scholar 

  13. S.A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions (in Russian). Dokl. Akad. Nauk SSSR, 148:1042–1045, 1963. English transi.: Soviet. Mat. Dokl. 148, 240–243.

    Google Scholar 

  14. I.H. Sloan and L. Walsh. A computer search of rank-2 lattice rules for multidimensional quadrature. Math. Comp., 54:281–302, 1990.

    Article  MathSciNet  Google Scholar 

  15. J. F. Traub, G. W. Wasilkowski, and H. Woiniakowski. Information-Based Complexity. Academic Press, New York, 1988.

    Google Scholar 

  16. T.T. Warnock. Computational investigations of low discrepancy point sets. In S.K. Zaremba, editor, Applications of Number Theory to Numerical Analysis. Academic Press, New York, 1972.

    Google Scholar 

  17. G.W. Wasilkowski and H. Woiniakowski. Explicit cost bounds of algorithms for multivariate tensor product problems. J. Complexity, 11:1–56, 1995.

    Article  MathSciNet  Google Scholar 

  18. P. Zinterhof. Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden. Österr. Akad. Wiss. Math. Nat. Kl., S.-Ber., Abt. II 185:121–132, 1976.

    Google Scholar 

  19. P. Zinterhof and H. Stegbuchner. Trigonometrische Approxi-mation mit Gleichverteilungsmethoden. Studia Sci. Math. Hun-gar., 13:273–289, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this paper

Cite this paper

Frank, K., Heinrich, S. (1998). Computing Discrepancies Related to Spaces of Smooth Periodic Functions. In: Niederreiter, H., Hellekalek, P., Larcher, G., Zinterhof, P. (eds) Monte Carlo and Quasi-Monte Carlo Methods 1996. Lecture Notes in Statistics, vol 127. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1690-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1690-2_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98335-6

  • Online ISBN: 978-1-4612-1690-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics