Skip to main content

Does Rank-One Convexity Imply Quasiconvexity?

  • Chapter

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 3))

Abstract

Let Ω ⊂ Rm be a bounded open set. Let Mnxm denote the set of real n × m matrices and suppose that W: Mnxm → ֿR is Borel measurable and bounded below. (Here ֿR denotes the extended real line with its usual topology.) We are interested in the problem of minimizing

$${\text{I(u) = }}\int\limits_{\Omega } {\text{W}} {\text{(Du)(x))dx}}$$
((1.1))

among functions u ε W1,1 (Ω;Rn) satisfying appropriate boundary conditions. An important application is to nonlinear elasticity, when W = W(A) is the stored-energy function of a homogeneous material and u(x) is the deformed position of the particle at x ε Ω in a reference configuration; in this case we usually take m = n = 3, but the cases 1 ≤ m ≤ n ≤ 3 are also of interest and cover certain string and membrane problems. It is convenient to allow W to take the value + so as to include various constraints. In compressible nonlinear elasticity (m = n = 3), for example, we may set W(A) = +∞ for det A ≤ b, where b ≥ 0 is a constant, to reflect the fact that infinite energy is required to make a reflection of the body or to homogeneously compress it to b times its original volume. Similarly, for an incompressible material it is convenient to set W(A) = +∞ if and only if det A ≠ 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Acerbi & N. Fusco, ‘Semicontinuity problems in the calculus of variations’, Arch. Rat. Mech. Anal., 86 (1984), 125–146.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Acerbi, G. Buttazzo and N. Fusco, ‘Semicontinuity and relaxation for integrals depending on vector valued functions’, J. Math. Pure et Appl. 62 (1983), 371–387.

    MathSciNet  MATH  Google Scholar 

  3. J.M. Ball, ‘Convexity conditions and existence theorems in nonlinear elasticity’, Arch. Rat. Mech. Anal., 65 (1977), 193–201.

    Article  MATH  Google Scholar 

  4. J.M. Ball, ‘Strict convexity, strong ellipticity, and regularity in the calculus of variations’, Math. Proc. Camb. Phil. Soc, 87 (1980) 501–513.

    Article  MATH  Google Scholar 

  5. J.M. Ball, ‘Discontinuous equilibrium solutions and cavitation in nonlinear elasticity’, Phil. Trans. Royal Soc. Lond., A 306 (1982), 557–611.

    Article  ADS  MATH  Google Scholar 

  6. J.M. Ball, ‘Remarks on the paper ‘Basic Calculus of Variations’, Pacific J. Math., 116 (1985) 7–10.

    MathSciNet  MATH  Google Scholar 

  7. J.M. Ball, J.C. Currie & P.J. Olver, ‘Null Lagrangians, weak continuity, and variational problems of arbitrary order’, J. Functional Analysis, 41 (1981), 135–174.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.M. Ball & J.E. Marsden, ‘Quasiconvexity at the boundary, positivity of the second variation, and elastic stability’, Arch. Rat. Mech. Anal., 86 (1984) 251–277.

    Article  MathSciNet  MATH  Google Scholar 

  9. J.M. Ball & F. Murat, ‘W1,p -quasiconvexity and variational problems for multiple integrals’, J. Functional Analysis, 58 (1984), 225–253.

    Article  MathSciNet  MATH  Google Scholar 

  10. O. Bolza, “Calculus of variations”, reprinted by Chelsea, New York, 1973.

    Google Scholar 

  11. H. Busemann & G.C. Shephard, “Convexity on nonconvex sets”, Proc. Coll. on Convexity, Copenhagen, Univ. Math. Inst., Copenhagen, (1965), 20–33.

    Google Scholar 

  12. B. Dacorogna, ‘Quasiconvexity and relaxation of nonconvex problems in the calculus of variations’, J. Functional Analysis, 46 (1982), 102–118.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Dacorogna, ‘Remarques sur les notions de polyconvexite, quasi convexité et convexité de rang 1’, J. Math. Pure et Appl.,

    Google Scholar 

  14. I. Ekel and & R. Témam, “Analyse convexe et problèmes variationnels”, Dunod, Gauthier-Villars, Paris, 1974.

    Google Scholar 

  15. L.C. Evans, ‘Quasiconvexity and partial regularity in the calculus of variations’, preprint.

    Google Scholar 

  16. L.M. Graves, ‘The Wei erstrass condition for multiple integral variation problems’, Ouke Math J., 5 (1939) 656–660.

    MathSciNet  Google Scholar 

  17. R.V. Kohn & G. Strang, ‘Optimal design and relaxation of variational problems, Comm. Pure and Appl. Math 39 (1986) 113–137.

    Article  MathSciNet  MATH  Google Scholar 

  18. R.J. Knops & C.A. Stuart, ‘Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity’, Arch. Rat. Mech. Anal. 86 (1984) 233–249.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Marcellini, ‘Approximation of quasiconvex functions, and lower semicon-tinuity of multiple integrals’, Manuscripta Math. 51 (1985) 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  20. N.G. Meyers, ‘Quasi-convexity and lower semi continuity of multiple variational integrals of any order’, Trans. Amer. Math. Soc, 119 (1965), 125–149.

    Article  MathSciNet  MATH  Google Scholar 

  21. C.B. Morrey, ‘Quasi-convexity and the lower semi continuity of multiple integrals’, Pacific J. Math. 2 (1952) 25–53.

    MathSciNet  MATH  Google Scholar 

  22. C.B. Morrey, “Multiple integrals in the calculus of variations”, Springer, Berlin, 1966.

    MATH  Google Scholar 

  23. D. Serre, ‘Formes quadratiques et calcul des variations’, J. de Math. Pures et Appl., 62 (1983), 177–196.

    MATH  Google Scholar 

  24. L. Tartar, conference in the workshop, Metastability and incompletely posed problems.

    Google Scholar 

  25. F.J. Terpstra, ‘Die darstellung biquadratischer formen als summen von quadra-ten mit anwendung auf die Variationsrechnung; Math. Ann., 116 (1938) 166–180.

    Article  MathSciNet  Google Scholar 

  26. L. van Hove, ‘Sur le signe de la variation seconde des integrales multiples à plusieurs fonctions inconnues’, Koninkl. Bel g. Acad., Klasse der Wetenschappen, Verhandelingen, 24 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Ball, J.M. (1987). Does Rank-One Convexity Imply Quasiconvexity?. In: Antman, S.S., Ericksen, J.L., Kinderlehrer, D., Müller, I. (eds) Metastability and Incompletely Posed Problems. The IMA Volumes in Mathematics and Its Applications, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8704-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8704-6_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8706-0

  • Online ISBN: 978-1-4613-8704-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics