Skip to main content

One Perspective on Open Problems in Multi-Dimensional Conservation Laws

  • Conference paper
Multidimensional Hyperbolic Problems and Computations

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 29))

Abstract

It is evident from the lectures at this meeting that the subject of systems of hyperbolic conservation laws is flourishing as one of the prototypical examples of the modern mode of applied mathematics. Research in this area often involves strong and close interdisciplinary interactions among diverse areas of applied mathematics including

  1. (1)

    Large (and small) scale computing

  2. (2)

    Asymptotic modelling

  3. (3)

    Qualitative modelling

  4. (4)

    Rigorous proofs for suitable prototype problems

combined with careful attention to experimental data when possible. In fact, the subject is developing at such a rapid rate that new predictions of phenomena through a combination of theory and computations can be made in regimes which are not readily accessible to experimentalists. Pioneering examples of this type of interaction can be found in the papers of Grove, Glaz, and Colella in this volume as well as the recent work of Woodward, Artola, and the author ([1], [2], [3], [4], [5], [6]). In this last work, novel mechanisms of nonlinear instability in supersonic vortex sheets have been documented and explained very recently through a sophisticated combination of numerical experiments and mathematical theory.

partially supported by grants N.S.F. DMS 8702864, A.R.O. DAAL03-89-K-0013, O.N.R. N00014-89-J-1044

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Artola and A. Majda, Nonlinear development of instabilities in supersonic vortex sheets I: the basic kink modes, Physica 28D, pp. 253–281, 1988.

    MathSciNet  Google Scholar 

  2. M. Artola and A. Majda, Nonlinear development of instabilities in supersonic vortex sheets II: resonant interaction among kink modes, (in press S.I.A.M. J. Appl. Math., to appear in 1989).

    Google Scholar 

  3. M. Artola and A. Majda, Nonlinear kink modes for supersonic vortex sheets, in press, Physics of Fluids A, to appear in 1989.

    Google Scholar 

  4. P. Woodward, in Numerical Methods for the Euler Equations of Fluid Dynamics, eds. Angrand, Dewieux, Desideri, and Glowinski, S.I.A.M. 1985.

    Google Scholar 

  5. P. Woodward, in Astrophysical Radiation Hydrodynamics, eds. K.H. Winkler and M. Norman, Reidel, 1986.

    Google Scholar 

  6. P. Woodward and K.H. Winkler, Simulation and visualization of fluid now in a numerical laboratory, preprint October 1988.

    Google Scholar 

  7. A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, Comm. Pure Appl. Math 39, (1986), pp. S 187–220.

    Article  MathSciNet  Google Scholar 

  8. A. Majda, Mathematical Fluid Dynamics: The Interaction of Nonlinear Analysis and Modern Applied Math, Centennial Celebration of A.M.S., Providence, RI, August 1988 (to be published by A.M.S. in 1990).

    Google Scholar 

  9. R. Courant and K. Friedrichs, Supersonic Flow and Shock Waves, Springer-Verlag, New York, 1949.

    Google Scholar 

  10. C.S. Morawetz, The mathematical approach to the sonic barrier, Bull. Amer. Math. Soc., 6, #2 (1982), pp. 127–145.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Appl. Math. Sciences 53, Springer-Verlag, New York 1984.

    Book  MATH  Google Scholar 

  12. W. Hayes, The vorticity jump across a gas dynamic discontinuity, J. Fluid Mech. 2 (1957), pp. 595–600.

    Article  MATH  Google Scholar 

  13. A. Majda and E. Thomann, Multi-dimensional shock fronts for second order wave equations, Comm. P.D.E., 12 (1987), pp. 777–828.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Glaz, P. Colella, I.I. Glass, and R. Deschambault, A detailed numerical, graphical, and experimental study of oblique shock wave reflections, Lawrence Berkeley Report, April 1985.

    Book  Google Scholar 

  15. M. Van Dyke, An Album of Fluid Motion, Parabolic Press, Stanford, 1982.

    Google Scholar 

  16. C.S. Morawetz, On the non-existence of continuous transonic flows past profiles, I, II, III, Comm. Pure Appl. Math. 9, pp. 45–68, 1956

    Article  MathSciNet  MATH  Google Scholar 

  17. C.S. Morawetz, On the non-existence of continuous transonic flows past profiles, I, II, III, Comm. Pure Appl. Math. 10, pp. 107–132, 1957

    Article  MathSciNet  MATH  Google Scholar 

  18. C.S. Morawetz, On the non-existence of continuous transonic flows past profiles, I, II, III, Comm. Pure Appl. Math. 11, pp. 129–144, 1958.

    Article  MathSciNet  Google Scholar 

  19. J. Hunter and J.B. Keller, Weak shock diffraction, Wave Motion 6 (1984), pp. 79–89.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Harabetian, Diffraction of a weak shock by a wedge, Comm. Pure Appl. Math. 40 (1987), pp. 849–863.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Jones, P. Martin, and C. Thornhill, Proc. Roy. Soc. London A, 209, 1951, pp. 238–247.

    Google Scholar 

  22. J.B. Keller and A. A. Blank, Diffraction and reflection of pulses by wedges and corners, Comm. Pure Appl. Math. 4 (1951), pp. 75–94.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Hunter, Hyperbolic waves and nonlinear geometrical acoustics, in Proceedings of 6th Army Conference on Applied Mathematics and Computations, Boulder, CO, May 1988 (to appear).

    Google Scholar 

  24. D.G. Crighton, Basic theoretical nonlinear acoustics, in Frontiers in Physical Acoustics, Proc. Int. School of Physics Enrico Fermi, Course 93, North-Holland, Amsterdam (1986).

    Google Scholar 

  25. D.G. Crighton, Model equations for nonlinear acoustics, Ann. Rev. Fluid. Mech. 11 (1979), pp.11–33.

    Article  Google Scholar 

  26. A. Majda, Nonlinear geometric optics for hyperbolic systems of conservation laws, in Oscillation Theory, Computation, and Methods of Compensated Compactness, IMA Volume 2, 115–165, Springer-Verlag, New York, 1986.

    Google Scholar 

  27. A. Majda and R. Rosales, Nonlinear mean field-high frequency wave interactions in the induction zone, S.I.A.M. J. Appl. Math., 47 (1987), pp. 1017–1039.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Almgren, A. Majda and R. Rosales, Rapid initiation through high frequency resonant nonlinear acoustics, (submitted to Combustion Sci. and Tech., July 1989).

    Google Scholar 

  29. R. Diperna and A. Majda, The validity of nonlinear geometric optics for weak solutions of conservation laws, Commun. Math. Physics 98 (1985), pp. 313–347.

    Article  MathSciNet  Google Scholar 

  30. J. K. Hunter and J.B. Keller, Weakly nonliner high frequency waves, Comm. Pure Appl. Math. 36 (1983), pp. 543–569.

    Article  MathSciNet  Google Scholar 

  31. J.K. Hunter, A. Majda, and R.R. Rosales, Resonantly interacting weakly nonlinear hyperbolic waves, II: several space variables, Stud. Appl. Math. 75 (1986), pp. 187–226.

    MathSciNet  MATH  Google Scholar 

  32. A. Majda and R.R. Rosales, Resonantly interacting weakly nonlinear hyperbolic waves, I: a single space variable, Stud. Appl. Math. 71 (1984), pp. 149–179.

    MathSciNet  MATH  Google Scholar 

  33. A. Majda, R. Rosales, M. Schonbek, A canonical system of integro-differential equations arising in resonant nonlinear acoustics, Studies Appl. Math, in 1989 (to appear).

    Google Scholar 

  34. R. Pego, Some explicit resonanting waves in weakly nonlinear gas dynamics, Stud. Appl. Math, in 1989 (to appear).

    Google Scholar 

  35. P. Cehelsky and R. Rosales, Resonantly interacting weakly nonlinear hyperbolic waves in the presence of shocks: A single space variable in a homogeneous time independent medium, Stud. Appl. Math. 74 (1986), pp. 117–138.

    MathSciNet  MATH  Google Scholar 

  36. L. Tartar, Compensated compactness and applications to partial differential equations, in Research Notes in Mathematics, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 4, R. Knops, ed., Pitman, London, 1979.

    Google Scholar 

  37. R. Diperna, Convergence of approximate solutions to conservation laws, Arch Rat. Mech. Anal. 82 (1983), pp. 27–70.

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Diperna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys. 91 (1983), pp. 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Rascle and D. Serre, Comparite par compensation et systemes hyperboliques de lois de conservation, Applications C.R.A.S. 299 (1984), pp. 673–679.

    MathSciNet  MATH  Google Scholar 

  40. D. Serre, La compucite par compensation pour les systems hyperboliques nonlineaires de deux equations a une dimension d’espace, J. Maths. Pures et Appl., 65 (1986), pp. 423–468.

    MATH  Google Scholar 

  41. W. Ficket and W. Davis, Detonation, Univ. California Press, Berkeley, 1979.

    Google Scholar 

  42. A. Majda, High Mach number combustion, in Reacting Flows: Combustion and Chemical Reactors, AMS Lectures in Applied Mathematics, 24, 1986, pp. 109–184.

    Google Scholar 

  43. A. Majda and V. Roytburd, Numerical study of the mechanisms for initiation of reacting shock waves, submitted to S.I.A.M. J. of Sci. and Stat. Computing in May 1989.

    Google Scholar 

  44. A. Majda, A qualitative model for dynamic combustion, S.I.A.M. J. Appl. Math., 41 (1981), pp. 70–93.

    Article  MathSciNet  MATH  Google Scholar 

  45. R. Rosales and A. Majda, Weakly nonlinear detonation waves, S.I.A.M. J. Appl. Math., 43 (1983), pp. 1086–1118.

    Article  MathSciNet  MATH  Google Scholar 

  46. A. Majda and V. Roytburd, Numerical modeling of the initiation of reacting shock waves, in Computational Fluid Mechanics and Reacting Gas Flows, B. Engquist et al eds., I.M.A. Volumes in Mathematics and Applications, Vol. 12, 1988, pp. 195–217.

    Chapter  Google Scholar 

  47. A. Majda and R. Rosales, A theory for spontaneous Mach stem formation in reacting shock fronts, I: the basic perturbation analysis, S.I.A.M. J. Appl. Math. 43, (1983), pp. 1310–1334.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Majda, A.J. (1991). One Perspective on Open Problems in Multi-Dimensional Conservation Laws. In: Glimm, J., Majda, A.J. (eds) Multidimensional Hyperbolic Problems and Computations. The IMA Volumes in Mathematics and Its Applications, vol 29. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9121-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9121-0_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9123-4

  • Online ISBN: 978-1-4613-9121-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics