Skip to main content

The Small Dispersion Limit of the Korteweg-De Vries Equation

  • Chapter

Part of the book series: Mathematical Sciences Research Institute Publications ((MSRI,volume 7))

Abstract

There are many physical systems which display shocks i.e. regions in space where the solution develops extremely large slopes. In general, such systems are too complicated to be treated by exact calculation and their properties are best studied through the proof of general theorems. A model of the formation and propagation of dispersive shocks in one space dimension, in which explicit calculation is possible, is given by the initial value problem for the Korteweg-de Vries equation:

$$ {u_{t}} - 6u{u_{x}} + {\varepsilon ^{2}}u{u_{{xxx}}} = 0 $$
((1.1a))
$$ u(x,o,\varepsilon ) = - v(x)$$
((1.1b))

in the limit ε → 0.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.S. Buslaev and V.N. Fomin, “An inverse scattering problem for the one-dimensional Schrödinger equation on the entire axis,” Vestnik Leningrad Univ. 17, 1962, 56–64 (In Russian).

    MathSciNet  MATH  Google Scholar 

  2. A. Cohen, T. Rappeler, “Scattering and Inverse Scattering for Steplike Potentials in the Schrödinger Equation,” Indiana U. Math J., Vol 34, #1, 1985, 127–180.

    Article  MATH  Google Scholar 

  3. P. Deift, E. Trubowitz, “Inverse Scattering on the Line,” Comm. Pure Appl. Math. 32, 1979, 121–252.

    Article  MathSciNet  MATH  Google Scholar 

  4. B.A. Dubrovin, V.B. Matveev, and S.P. Novikov, “Nonlinear equations of Korteweg-de Vries type, finite zoned linear operators, and Abelian varieties,” Uspekhi Mat. Nauk. 31, 1976, 55–136.

    MathSciNet  MATH  Google Scholar 

  5. F.J. Dyson, “Old and New Approaches to the Inverse Scattering Problem,” Studies in Math Physics, Princeton Series in Physics (Lieb, Simon, Wightman eds.) 1976.

    Google Scholar 

  6. L. Faddeev, “The Inverse Problem in the Quantum Theory of Scattering,” J. Math. Phys., Vol 4, #1, Jan. 1963, 72–104.

    Article  MathSciNet  ADS  Google Scholar 

  7. H. Flaschka, M.G. Forest and D.W. McLaughlin, “Multiphase Averaging and the Inverse Spectral Solution of the Korteweg-de Vries Equation,” Comm. Pure Appl. Math. 33, 1980, 739–784.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. C.S. Gardner, J.M. Green, M.D. Kruskal, R.M. Miura, “Method for solving the Korteweg-de Vries equation,” Phys. Rev. Lett. 19, (1967), 1095–1097.

    Article  ADS  MATH  Google Scholar 

  9. I.M. Gelfand, B.M. Levitan, “On the determination of a differential equation from its spectral function,” Izv, Akad. Nauk SSR, Ser. Math., 15 (309–60). Eng. Translation: Am. Math. Soc. Translation (2), 1, 253 (1955).

    MathSciNet  Google Scholar 

  10. I. Kay, H.E. Moses, “Reflectionless Transmission through Dielectrics and Scattering Potentials,” J. Appl. Phys. 27, 1956. 1503–1508.

    Article  ADS  MATH  Google Scholar 

  11. P.D. Lax, “Integrals of Nonlinear Equations of Evolution and Solitary Waves,” Comm. Pure Appl. Math., Vol 21 (1968), 467–490.

    Article  MathSciNet  MATH  Google Scholar 

  12. P.D. Lax and C.D. Levermore, “The Small Dispersion Limit of the Korteweg-de Vries Equation,” I, II, III Comm. Pure Appl. Math. 36, 1983, 253–290, 571–593, 809–829.

    Article  MathSciNet  MATH  Google Scholar 

  13. H.P. McKean and E. Trubowitz, “Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points,” Comm. Pure Appl. Math. 29, 1976, 146–226.

    MathSciNet  Google Scholar 

  14. H.P. McKean and P. vanMoerbeke, “The spectrum of Hill’s equation,” Invent. Math. 30, 1975, 217–274.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. H.P. McKean, “Partial Differential Equations and Geometry,” Proc. Park City Conference, editor C.I. Byrnes, Marcel Dekker, Inc., New York, 1979, 237–252.

    Google Scholar 

  16. E. Trubowitz, “The inverse problem for periodic potentials,” Comm. Pure Appl. Math. 30, 1977, 321–337.

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Venakides, “The zero dispersion limit of the Korteweg-de Vries equation with non-trivial reflection coefficient,” Comm. Pure Appl. Math. 38, 1985, 125–155.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Venakides, “The generation of modulated wavetrains in the solution of the Korteweg-de Vries equation,” Comm. Pure Appl. Math. 38, 1985, 883–909.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Venakides, “The zero dispersion limit of the periodic kdV equation,” AMS Transactions in press.

    Google Scholar 

  20. G. Whitham, “Linear and Nonlinear Waves,” Wiley Interscience, New York, 1974.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

To Peter Lax on his 60th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Venakides, S. (1987). The Small Dispersion Limit of the Korteweg-De Vries Equation. In: Chorin, A.J., Majda, A.J. (eds) Wave Motion: Theory, Modelling, and Computation. Mathematical Sciences Research Institute Publications, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9583-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9583-6_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-9585-0

  • Online ISBN: 978-1-4613-9583-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics