Skip to main content

Strong Solutions to the Problem of Motion of a Rigid Body in a Navier—Stokes Liquid under the Action of Prescribed Forces and Torques

  • Chapter
Nonlinear Problems in Mathematical Physics and Related Topics I

Part of the book series: International Mathematical Series ((IMAT,volume 1))

Abstract

This paper is devoted to the motion of a rigid body in an infinite Navier-Stokes liquid under the action of external forces and torques. For sufficiently regular data, we prove the existence of a local strong solution to the corresponding initial-boundary-value problem for the system body-liquid.

The work is supported by the NSF (grant no. DMS-0103970).

A good part of this paper was written when the author was visiting the Department of Mechanical Engineering of the University of Pittsburgh. She would like to thank the Fundação para a Ciência e a Tecnologia for financial support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Stokes, On the effect of internal friction of fluids on the motion of pendulums, Trans. Cambridge Phil. Soc. 9 (1851), 8–85.

    Google Scholar 

  2. G. Kirchhoff, Über die Bewegung eines Rotationskörpers in einer Flüssigkeit, J. Reine Angew. Math. 71 (1869), 237–281.

    Google Scholar 

  3. W. Thomson and P. G. Tait, Natural Philosophy. 1, 2, Cambridge University Press, Cambridge, 1879.

    Google Scholar 

  4. C. W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, Leipzig, Akad. Verlag. M.B.H., Leipzig, 1927.

    MATH  Google Scholar 

  5. J. Leray, Etude de Diverses Équations Intégrales non Linéaires et de Quelques Problèmes que Pose l’ Hydrodynamique, J. Math. Pures Appl. 12 (1933), 1–82.

    MathSciNet  MATH  Google Scholar 

  6. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63 (1934), 193–248.

    Article  MathSciNet  MATH  Google Scholar 

  7. O. A. Ladyzhenskaya, Investigation of the Navier-Stokes equation for a stationary flow of an incompressible fluid, Usp. Mat. Nauk 14 (1959), 3, 75–97. (Russian)

    MATH  Google Scholar 

  8. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, New York, 1969.

    MATH  Google Scholar 

  9. H. Fujita, On the existence and regularity of the steady-state solutions of the Navier-Stokes equation, J. Fac. Sci., Univ. Tokyo, (1A) 9 (1961), 59–102.

    MATH  Google Scholar 

  10. R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems, Arch. Ration. Mech. Anal. 19 (1965), 363–406.

    Article  MathSciNet  MATH  Google Scholar 

  11. K. I. Babenko, On stationary solutions of the problem of flow past a body of a viscous incompressible fluid, Mat. Sb. 91 (1973), 133, 3–27; English transl., Math. SSSR Sb. 20 (1973), 1–25.

    MathSciNet  Google Scholar 

  12. J. G. Heywood, The Navier-Stokes equations: On the existence, regularity and decay of solutions, Indiana Univ. Math. J. 29 (1980), 639.

    Article  MathSciNet  MATH  Google Scholar 

  13. 13. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Nonlinear Steady Problems, Springer Tracts Nat. Philos. 39, 1998.

    Google Scholar 

  14. G. P. Galdi, J. G. Heywood, and Y. Shibata, On the global existence and convergence to steady state of Navier-Stokes flow past an obstacle that is started from rest, Arch. Ration. Mech. Anal. 138 (1997), 307–318.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. S. Advani, Flow and Rheology in Polymer Composites Manufacturing, Elsevier, Amsterdam, 1994.

    Google Scholar 

  16. B. Tinland, L. Meistermann, and G. Weill, Simultaneous measurements of mobility, dispersion, and orientation of DNA during steady-field gel electrophoresis coupling a fluorescence recovery after photobleaching apparatus with a fluorescence detected linear dichroism setup, Phys. Rev. E, 61 (2000), 6, 6993–6998.

    Article  Google Scholar 

  17. D. D. Joseph, Flow induced microstructure in Newtonian and viscoelastic fluids, Proc. the Fifth World Congress of Chemical Engineering, Particle Technology Track 6 (1996), pp. 3–16.

    Google Scholar 

  18. H. Schmid-Schonbein and R. Wells, Fluid drop-like transition of erythrocytes under shear, Science 165 (1969), 3890, 288-291.

    Article  Google Scholar 

  19. H. F. Weinberger, Variational properties of steady fall in Stokes flow, J. Fluid Mech. 52 (1972), 321–344.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. F. Weinberger, On the steady fall of a body in a Navier-Stokes fluid, Proc. Symp. Pure Math. 23 (1973), 421–440.

    Google Scholar 

  21. H. F. Weinberger, Variational principles of a body falling in steady Stokes flow, Proc. Symp. Continuum Mechanics and Related Problems of Analysis 2, Mecniereba (1974), pp. 330-339.

    MathSciNet  Google Scholar 

  22. D. Serre, Chute libre d’un solid dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math. 40 (1987), 1, 99–110.

    Article  Google Scholar 

  23. G. P. Galdi, On the steady self-propelled motion of a body in a viscous incompressible fluid, Arch. Ration. Mech. Anal. 148 (1999), 53–88.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. P. Galdi, Slow steady fall of a rigid body in a second-order fluid, J. Non-Newtonian Fluid Mech. 93 (2000), 169–177.

    Article  Google Scholar 

  25. G. P. Galdi and A. Vaidya, Translational steady fall of symmetric bodies in a Navier-Stokes liquid, J. Math. Fluid Mech. 3 (2000), 183–211.

    Article  MathSciNet  Google Scholar 

  26. B. Desjardins and M. Esteban, Existence of weak solutions for the motion of rigid bodies in viscous fluid, Arch. Ration. Mech. Anal. 46 (1999), 59–71.

    Article  MathSciNet  Google Scholar 

  27. G. P. Galdi, Slow motion of a body in a viscous incompressible fluid with application to particle sedimentation, Quad. Mat. Univ. Napoli 2 (1998), 1–35.

    MathSciNet  Google Scholar 

  28. K. H. Hoffmann and V. N. Starovoitov, On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl. 9 (1999), 633–648.

    MathSciNet  MATH  Google Scholar 

  29. M. Gunzburger, Hyung-Chun Lee, and G. A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech. 2 (2000), 3, 219–266.

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Desjardins and M. Esteban, On weak solutions for fluid-rigid structureiInteraction: Compressible and incompressible models, Commun. Partial Differ. Equations 25 (2000), 1399–1413.

    Article  MathSciNet  MATH  Google Scholar 

  31. K. H. Hoffmann and V. N. Starovoitov, Zur Bewegung einer Kugel in einer zähen Flüssigkeit, Doc. Math. 5 (2000), 15–21.

    MathSciNet  MATH  Google Scholar 

  32. H. J. S. Martin, V. Starovoitov, and M. Tucsnak, Global Weak Solutions for the Two-dimensional Motion of Several Rigid Bodies in an Incompressible Viscous Fluid, Preprint, 2001.

    Google Scholar 

  33. G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, Handbook of Mathematical Fluid Mechanics, Elsevier Science [To appear]

    Google Scholar 

  34. A. L. Silvestre, Mathematical analysis of the motion of a rigid body in a viscous fluid, Doct. Thesis, Inst. Super. Tecnico, Lisbon, 2002.

    Google Scholar 

  35. T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle, Arch. Ration. Mech. Anal. 150 (1999), 307–348.

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Fujita and T. Kato, On the Navier-Stokes initial-value problem. I, Arch. Ration. Mech. Anal. 16 (1964), 269–315

    Article  MathSciNet  MATH  Google Scholar 

  37. T. Ohyama, Interior regularity of weak solutions of the time dependent Navier-Stokes equation, Proc. Japan Acad., Ser. A 36 (1960), 273–278.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal. 9 (1962), 187–192.

    Article  MathSciNet  MATH  Google Scholar 

  39. W. Borchers, Zur Stabilität und Faktorisierungsmethode für die Navier-Stokes Gleichungen inkompressibler viskoser Flüssigkeiten, Habilitationsschrift, Univ. Paderborn, 1992.

    Google Scholar 

  40. R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

    MATH  Google Scholar 

  41. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Linearized Steady Problems, Springer Tracts Nat. Philos. 38, (1998).

    Google Scholar 

  42. P. Maremonti and R. Russo, On existence and uniqueness of classical solutions to the stationary Navier-Stokes equations and to the traction problem of linear elastostatics. Classical problems in mechanics, Quad. Mat. 1 Aracne, Rome, 1997, pp. 171–251,

    Google Scholar 

  43. R. Berker, Contrainte sur un Paroi en Contact avec un Fluide Visqueux Classique, un Fluide de Stokes, un Fluide de Coleman-Noll, C.R. Acad. Sci., Paris, Ser. I, Math. 285 (1964), 5144–5147.

    MathSciNet  Google Scholar 

  44. R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1977.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor O. A. Ladyzhenskaya on her jubilee, in sincere appreciation of her seminal contribution to the mathematical theory of the Navier-Stokes equations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Galdi, G.P., Silvestre, A.L. (2002). Strong Solutions to the Problem of Motion of a Rigid Body in a Navier—Stokes Liquid under the Action of Prescribed Forces and Torques. In: Birman, M.S., Hildebrandt, S., Solonnikov, V.A., Uraltseva, N.N. (eds) Nonlinear Problems in Mathematical Physics and Related Topics I. International Mathematical Series, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0777-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0777-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5234-1

  • Online ISBN: 978-1-4615-0777-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics