Skip to main content

Functions with Primal-Dual Gradient Structure and u-Hessians

  • Chapter
Book cover Nonlinear Optimization and Related Topics

Part of the book series: Applied Optimization ((APOP,volume 36))

Abstract

This paper introduces examples of convex functions in a general class of functions having what we call primal-dual gradient structure. The class contains finitely defined maximum value functions and maximum eigenvalue functions as well as other infinitely determined max-functions. For such a function there is a space decomposition that allows us to identify a subspace u on which the function appears smooth. Moreover, the special structure combined with sufficiency conditions implies the existence of smooth trajectories on which the function has a certain second order expansion. This results in an explicit expression for the Hessian of a related u-Lagrangian.

Research supported by the National Science Foundation under Grant No. DMS-9703952 and by FAPERJ (Brazil) under Grant No. E-26/171.393/97.

Research supported by FAPERJ (Brazil) under Grant No.E26/150.205/98.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ben-Tal and M. Bendsoe. A new method for optimal truss topology design. SIAM Journal on Optimization, 3: 322 - 358, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Ben-Tal and J. Zowe. Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems. Mathematical Programming, 24 (1): 70 - 91, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Cominetti and R. Correa. A generalized second-order derivative in nonsmooth optimization. SIAM Journal on Control and Optimization, 28 (4): 789 - 809, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  4. F.H. Clarke. Optimization and Nonsmooth Analysis. Wiley, 1983. Reprinted by Siam, 1990.

    Google Scholar 

  5. R., Cominetti. On pseudo-differentiability. Trans. Amer. Math. Soc., 2324: 843 - 865, 1991.

    Article  Google Scholar 

  6. J.-B. Hiriart-Urruty. Refinements of necessary optimality conditions in non-differentiable programming I. Applied Mathematics and Optimization, 5: 6382, 1979.

    MathSciNet  Google Scholar 

  7. J.-B. Hiriart-Urruty. Refinements of necessary optimality conditions in non-differentiable programming II. Mathematical Programming Study, 19: 120139, 1982.

    Google Scholar 

  8. A.D. Ioffe. Variational analysis of a composite function: a formula for thelower second order epi-derivative. Journal of Mathematical Analysis and Applications, pages 379 - 405, 1991.

    Google Scholar 

  9. C. Lemaréchal and R. Mifflin. Global and superlinear convergence of an algorithm for one-dimensional minimization of convex functions. Mathematical Programming, 24: 241 - 256, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Lemaréchal, F. Oustry, and C. Sagastizâbal. The U-Lagrangian of a convex function. Transactions of the AMS, 1997. Accepted for publication.

    Google Scholar 

  11. R. Mifflin and C. Sagastizâbal. On VU-theory for functions with primal-dual gradient structure. Submitted, 1999.

    Google Scholar 

  12. R. Mifflin and C. Sagastizâbal. VU-decomposition derivatives for convex max-functions. In R. Tichatschke and M. Théra, editors, Ill-posed problems and variational inequalities, Lecture Notes. Springer, 1999. Accepted for publication.

    Google Scholar 

  13. F. Oustry. A second-order bundle method to minimize the maximum eigen-value function. Submitted, 1997.

    Google Scholar 

  14. Ous98] F. Oustry. The U-Lagrangian of the maximum eigenvalue function. SIAM Journal on Optimization. To appear.

    Google Scholar 

  15. M. L. Overton and R.S. Womersley. Second derivatives for optimizing eigen-values of symmetric matrices. Journal of Mathematical Analysis and Applications, 3: 667 - 718, July 1995.

    Google Scholar 

  16. J.-P. Penot. Subhessians, superhessians and conjugation. Nonlinear Analysis: Theory, Methods and Applications, 23 (6): 689 - 702, 1994.

    MathSciNet  Google Scholar 

  17. R.A. Poliquin. Proto-differentiation of subgradient set-valued mappings. Canadian Journal of Mathematics, 42 (3): 520 - 532, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  18. S.M. Robinson. Local structure of feasible sets in nonlinear programming, part III: stability and sensitivity. Mathematical Programming Study, 30: 4566, 1987.

    Google Scholar 

  19. R.T. Rockafellar. First and second-order epi-differentiability in nonlinear programming. Trans. Amer. Math. Soc., 307: 75 - 107, 1988.

    Article  Google Scholar 

  20. R.T. Rockafellar. Proto-differentiability of set-valued mappings and its applications in optimization. Annales de Institut Henri Poincaré, Analyse non linéaire, 6: 449 - 482, 1989.

    Google Scholar 

  21. R.T. Rockafellar. Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives. Mathematics of Operations Research, 14: 462 - 484, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  22. R.T. Rockafellar and R.J.-B. Wets. Variational Analysis. Number 317 in Grund. der math. Wiss. Springer-Verlag, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mifflin, R., Sagastizábal, C. (2000). Functions with Primal-Dual Gradient Structure and u-Hessians. In: Pillo, G.D., Giannessi, F. (eds) Nonlinear Optimization and Related Topics. Applied Optimization, vol 36. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3226-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3226-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4823-6

  • Online ISBN: 978-1-4757-3226-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics