Skip to main content

PDE as a Unified Subject

  • Chapter

Part of the book series: Modern Birkhäuser Classics ((MBC))

Abstract

Given that one of the goals of the conference is to address the issue of the unity of Mathematics, I feel emboldened to talk about a question which has kept bothering me all through my scientific career: Is there really a unified subject of Mathematics which one can call PDE? At first glance this seems easy: we may define PDE as the subject which is concerned with all partial differential equations. According to this view, the goal of the subject is to find a general theory of all, or very general classes of PDE’s. This “natural” definition comes dangerously close to what M. Gromov had in mind, I believe, when he warned us, during the conference, that objects, definitions or questions which look natural at first glance may in fact “be stupid”. Indeed, it is now recognized by many practitioners of the subject that the general point of view, as a goal in itself, is seriously flawed. That it ever had any credibility is due to the fact that it works quite well for linear PDE’s with constant coefficients, in which case the Fourier transform is extremely effective. It has also produced significant results for some general special classes of linear equations with variable coefficients. Its weakness is most evident in connection to nonlinear equations. The only useful general result we have is the Cauchy-Kowalevsky theorem, in the quite boring class of analytic solutions. In the more restrictive frameworks of elliptic, hyperbolic, or parabolic equations, some important local aspects of nonlinear equations can be treated with a considerable degree of generality. It is the passage from local to global properties which forces us to abandon any generality and take full advantage of the special features of the important equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Anderson, V. Moncrief, The global existence problem in general relativity, preprint (1999).

    Google Scholar 

  2. J. Bourgain, Nonlinear Schrödinger equations, in “Nonlinear Wave Equations and Frequency Interactions”, AMS, series 4, Park City, 1999.

    Google Scholar 

  3. J. Bourgain, Harmonic analysis and nonlinear PDE’s, Proceedings of ICM, Zurich (1994).

    Google Scholar 

  4. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear wave equations, I: Schrödinger equations; II: The KdV equation, GAFA 3 (1993), 107–156; 209–262.

    Article  MATH  MathSciNet  Google Scholar 

  5. Y. Brenier, Minimal geodesies on groups of volume preserving maps, Comm. Pure. Appl. Math. 52 (1999), 411–452.

    Article  MathSciNet  Google Scholar 

  6. H. Brezis, F. Browder, Partial differential equations in the 20th century, Encyclopedia Italiana, in its series on the history of the twentieth century, to appear.

    Google Scholar 

  7. Y.Ch. Bruhat, Theoremes d’existence pour certains systemes d’equations aux derivee partielles nonlineaires, Acta Math. 88 (1952), 141–225.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Chang, L. Wang, P. Yang, A regularity of biharmonic maps, C.P.A.M. LII (1999), 1113–1137.

    MathSciNet  Google Scholar 

  9. J.Y. Chemin, H. Bahouri, Equations d’ondes quasilineaires et effect dispersif, AJM, to appear.

    Google Scholar 

  10. D. Christodoulou, The Action Principle and PDE’s, Annals of Math. Studies 146 (1999).

    Google Scholar 

  11. D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small initial data, C.P.A.M. 39 (1986), 267–282.

    MATH  MathSciNet  Google Scholar 

  12. D. Christodoulou, S. Klainerman, The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, 41 (1993).

    Google Scholar 

  13. D. Christodoulou, A.S.T. Zadeh, On the regularity of spherically symmetric wave-maps, Comm. P. Appl. Math. 46 (1993), 1041–1091.

    Article  MATH  Google Scholar 

  14. L.C. Evans, Partial regularity for harmonic maps into spheres, Arch. Rat. Mech. Anal. 116 (1991), 101–113.

    Article  MATH  Google Scholar 

  15. A. Fischer, J. Marsden, The Einstein evolution equations as a first order quasilinear, symmetric hyperbolic system, Comm. Math. Phys. 28 (1972), 1–38.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Fischer, V. Moncrief, The Einstein flow, the sigma-constant, and the geometrization of three manifolds, preprint (1999).

    Google Scholar 

  17. D. Foschi, S. Klainerman, On bilinear estimates for solutions to the wave equation, Annales ENS, to appear.

    Google Scholar 

  18. C.S. Gardner, J.M. Green, M.D. Kruskal, R.M. Miura, Method for solving the KdV equation, Phys. Rev. Lett. 19(1967), 1095–1097.

    Article  MATH  Google Scholar 

  19. M. Gromov, Partial Differential Relations, Springer Verlag, Berlin, 1986.

    MATH  Google Scholar 

  20. S. Hildebrandt, A. Tromba, Mathematics and Optimal Form, Scientific American Library, 1984.

    Google Scholar 

  21. G. Huisken, T. Ilmanen, The inverse mean curvature flow and the Penrose conjecture, JDG, to appear.

    Google Scholar 

  22. F. John, Formation of singularities in elastic waves, Springer Lecture Notes in Phys. 195 (1984), 190–214.

    Google Scholar 

  23. L. Kapitanky, Global and unique weak solutions of nonlinear wave equations, Math. Res. Lett. 1 (1994), 211–223.

    MathSciNet  Google Scholar 

  24. M. Keel, T. Tao, Local and global well-posedness of wave maps on R1+1 for rough data, IMRN 21 (1998), 1117–1156.

    Article  MathSciNet  Google Scholar 

  25. C. Kenig, G. Ponce, L. Vega, The Cauchy problem for the KdV equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1994), 1–21.

    Article  MathSciNet  Google Scholar 

  26. S. Klainerman, Long time behavior of solutions to nonlinear wave equations, Proc. ICM 1983, Warszawa, 1209–1215.

    Google Scholar 

  27. S. Klainerman, The null condition and global existence to nonlinear wave equations, AMS Lectures in Applied Mathematics 23 (1986), 293–326.

    MathSciNet  Google Scholar 

  28. S. Klainerman, M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), 1221–1268.

    Article  MATH  MathSciNet  Google Scholar 

  29. S. Klainerman, M. Machedon, Finite energy solutions for the Yang-Mills solutions in ℝ3+1, Annals of Math. 142 (1995), 39–119.

    Article  MATH  MathSciNet  Google Scholar 

  30. S. Klainerman, M. Machedon, Smoothing estimates for null forms and applications, Duke Math. J. 81 (1995), 99–103.

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Klainerman, M. Machedon, On the algebraic properties of the H n/2,1/2 spaces, I.M.R.N 15 (1998), 765–774.

    MathSciNet  Google Scholar 

  32. S. Klainerman, M. Machedon, On the optimal local regularity for Gauge field theories, Diff. Integr. Eqs. 10:6 (1997), 1019–1030.

    MATH  MathSciNet  Google Scholar 

  33. S. Klainerman, S. Selberg, Remark on the optimal regularity for equations of wave maps type, Comm. P.D.E. 22:5–6 (1997), 901–918.

    MATH  MathSciNet  Google Scholar 

  34. S. Klainerman, D. Tataru, On the optimal local regularity for the Yang-Mills equations, J. AMS 12:1 (1999), 93–116.

    MATH  MathSciNet  Google Scholar 

  35. N.H. Kuiper, On C 1 isometric embeddings, I. Proc. Koninkl. Neder. Ak. Wet A-58 (1955), 545–556.

    MathSciNet  Google Scholar 

  36. H. Llnblad, Counterexamples to local existence for semilinear wave equations, AJM 118 (1996), 1–16.

    Google Scholar 

  37. H. Lindblad, Counterexamples to local existence for quasilinear wave equations, MRL, to appear.

    Google Scholar 

  38. J. Lutzen, The Prehistory of the Theory of Distributions, Springer-Verlag, 1992.

    Google Scholar 

  39. H. Minkowski, Space and Time, English translation of the original article in “The Meaning of Relativity”, Dover, 1952.

    Google Scholar 

  40. S. Müller, M. Struwe, Global existence for wave maps in 1 + 2 dimensions for finite energy data, preprint.

    Google Scholar 

  41. J. Nash, C l isometric embeddings, Ann. of Math. 60 (1954), 383–396.

    Article  MathSciNet  Google Scholar 

  42. Y. Neeman, Pythagorean and Platonic conceptions in XXth Century physics, in this issue.

    Google Scholar 

  43. H. Poincaré, Sur les rapports de l’analyse pure et de la physique mathematique, First Int. Congress of Mathematicians, Zurich, 1897.

    Google Scholar 

  44. T. Riviére, Applications harmonique de B 3 dans S 2 partout disconnues, C.R. Acad. Sci. Paris 314 (1992), 719–723.

    MATH  Google Scholar 

  45. V. Schaeffer, An inviscid flow with compact support in space-time, Journ. Geom. Anal. 3:4 (1993), 343–401.

    Google Scholar 

  46. R. Schoen, A report on some recent progress on nonlinear problems in geometry, Surveys in Differential Geometry 1 (1991), 201–241.

    Google Scholar 

  47. R. Schoen, K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff Geom. 17 (1982), 307–335; 18 (1983), 329.

    MATH  MathSciNet  Google Scholar 

  48. J. Shatah, Weak solutions and development of singularities in the SU(2) σ model, Comm. Pure Appl. Math. 41 (1988), 459–469.

    Article  MATH  MathSciNet  Google Scholar 

  49. J. Shatah, A.S.T. Zadeh, On the Cauchy problem for equivariant wave maps, C.P.A.M. 47 (1994), 719–754.

    MATH  Google Scholar 

  50. A. Shnirelman, On the nonuniqueness of weak solutions for Euler equations, C.P.A.M. 50 (1997), 1261–1286.

    MATH  MathSciNet  Google Scholar 

  51. J. Shatah, M. Struwe, Well posedness in energy space for semilinear wave equations with critical growth, Int. Math. Res. Not. 7 (1994), 303–309.

    Article  MathSciNet  Google Scholar 

  52. T. Sideris, Formation of singularities in three-dimensional Vompressible fluids, Comm. Math. Phys. 101 (1985), 155–185.

    Article  MathSciNet  Google Scholar 

  53. H. Smith, A parametrix construction for wave equations with C 1,1 coefficients, Annales de L’Institut Fourier 48 (1998), 797–835.

    MATH  Google Scholar 

  54. H. Smith, C. Sogge, On Strichartz and eigenfunction estimates for low regularity metrics, preprint.

    Google Scholar 

  55. H. Smith, C. Sogge, Null form estimates for (1/2,1/2) symbols and local existence for a quasilinear Dirichlet wave equation, Ann. Sci. ENS, to appear.

    Google Scholar 

  56. C. Sogge, Propagation of singularities and maximal functions in the plane, Inv. Mat. 104 (1991), 349–376.

    Article  MATH  MathSciNet  Google Scholar 

  57. J.J. Stokes, On a difficulty in the theory of sound, Philosophical Magazine 33 (1848), 349–356.

    Google Scholar 

  58. W. Strauss, Weak solutions for nonlinear wave equations, Annais Acad. Brazil Ciencias 42 (1970), 645–651.

    Google Scholar 

  59. D. Tataru, Local and global results for wave maps I, C.P.D.E 23:9-10 (1998), 1781–1793; part II to appear in AJM.

    Google Scholar 

  60. D. Tataru, Strichartz estimates for operators with non smooth coefficients and the nonlinear wave equation, AJM, to appear; part II and III, preprints.

    Google Scholar 

  61. R. Wald, Gravitational Collapse and Cosmic Cesorship, 1997, grqc/9712055.

    Google Scholar 

  62. E. Wigner, The unreasonable effectiveness of mathematics in the natural sciences, C.P.A.M. 13 (1960), 1–15.

    MATH  Google Scholar 

  63. T. Wolff, Recent Work Connected to the Kakeya Problem, Prospects in Math. AMS, Princeton 1996.

    Google Scholar 

  64. T. Wolff, A sharp bilinear restriction estimate, IMRM to appear.

    Google Scholar 

  65. S.T. Yau, Open problems in geometry, preprint.

    Google Scholar 

  66. A.S.T. Zadeh, Relativistic and nonrelativistic elastodynamics with small shear strain, Ann. Inst. H. Poincaré, Physique Theorique 69 (1998), 275–307.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser, Springer Basel AG

About this chapter

Cite this chapter

Klainerman, S. (2010). PDE as a Unified Subject. In: Alon, N., Bourgain, J., Connes, A., Gromov, M., Milman, V. (eds) Visions in Mathematics. Modern Birkhäuser Classics. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0422-2_10

Download citation

Publish with us

Policies and ethics