Skip to main content

Overview of Fractional h-difference Operators

  • Conference paper
  • First Online:

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 229))

Abstract

Fractional difference operators and their properties are discussed. We give a characterization of three operators that we call Grünwald-Letnikov, Riemann-Liouville and Caputo like difference operators. We show relations among them. In the paper, linear fractional h-difference equations are described. We give formulas of solutions to initial value problems. Crucial formulas are gathered in the tables presented in the last section of the paper.

Mathematics Subject Classification (2010). Primary 39A70; Secondary 26A33.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Abdeljawad, On Riemann and Caputo fractional differences. Comput. Math. Appl. 62 (3) (2011), 1602–1611.

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Abdeljawad, D. Baleanu, Fractional differences and integration by parts. J. Comput. Anal. Appl. 13 (3) (2011), 574–582.

    MathSciNet  MATH  Google Scholar 

  3. O.P. Agrawal, D. Baleanu. A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Control 13 (9–10) (2007), 1269–1281.

    Article  MathSciNet  MATH  Google Scholar 

  4. G.A. Anastassiou, Fractional Differentiation Inequalities, Research Monograph, Springer, New York 2009.

    Google Scholar 

  5. F.M. Atici, P.W. Eloe, Initial value problems in discrete fractional calculus. Proc. Amer. Math. Soc. 137 (3) (2008), 981–989.

    Article  MathSciNet  Google Scholar 

  6. F.M. Atici, P.W. Eloe, A Transform Method in Discrete Fractional Calculus. Int. J. Difference Equ. 2 (2007), 165–176.

    MathSciNet  Google Scholar 

  7. D. Baleanu, New applications of fractional variational principles. Rep. Math. Phys. 61 (2) (2008), 199–206.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Method. World Scientific Publishing, New York 2012.

    Google Scholar 

  9. N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Contin. Dyn. Syst. 29 (2) (2011), 417–437.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Čermák, T. Kisela, L. Nechvátal, Discrete Mittag-Leffler functions in linear fractional difference equations. Abst. Appl. Anal. (2011), 1–21.

    Google Scholar 

  11. F. Chen, X. Luo, Y. Zhou, Existence results for nonlinear fractional difference equation. Advances in Difference Eq. article ID 713201, 12 p., doi: 10.1155/2011/713201 2011.

  12. R.A.C. Ferreira, D.F.M. Torres, Fractional h-difference equations arising from the calculus of variations. Appl. Anal. Discrete Math. 5 (1) (2011), 110–121.

    Article  MathSciNet  Google Scholar 

  13. M.T. Holm, The theory of discrete fractional calculus: Development and application. University of Nebraska – Lincoln 2011.

    Google Scholar 

  14. T. Kaczorek, Positive 1D and 2D Systems Springer-Verlag, London 2002.

    Google Scholar 

  15. J. Klamka, Controllability of nonlinear discrete systems. Int. J. Appl. Math. Comput. Sci. 12 (2) (2002), 173–180.

    MathSciNet  MATH  Google Scholar 

  16. K.S. Miller, B. Ross, Fractional difference calculus. Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and their Applications, Nihon University, Kōriyama, Japan (1989), 139–152.

    Google Scholar 

  17. K.S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations Wiley, New York 1993.

    Google Scholar 

  18. M.D. Ortigueira, Fractional central differences and derivatives. J. Vib. Control 14 (9–10) (2008), 1255–1266.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Ostalczyk, The non-integer difference of the discrete time function and its application to the control system synthesis. Int. J. Syst. Sci. 31 (12) (2000), 1551–1561.

    Article  MATH  Google Scholar 

  20. I. Podlubny, Fractional Differential Equations. AP, New York, NY 1999.

    Google Scholar 

  21. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives. Translated from the 1987 Russian original, Gordon and Breach, Yverdon 1993.

    Google Scholar 

  22. D. Sierociuk, D. Dzieliński, Fractional Kalman filter algorithm for the states parameters and order of fractional system estimation. Int. J. Appl. Math. Comp. Sci. 16 (1) (2006), 129–140.

    Google Scholar 

  23. M.F. Silva, J.A. Tenreiro Machado, R.S. Barbosa, Using fractional derivatives in joint control of hexapod robots. J. Vib. Control 14 (9–10) (2008), 1473–1485.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Mozyrska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Mozyrska, D., Girejko, E. (2013). Overview of Fractional h-difference Operators. In: Almeida, A., Castro, L., Speck, FO. (eds) Advances in Harmonic Analysis and Operator Theory. Operator Theory: Advances and Applications, vol 229. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0516-2_14

Download citation

Publish with us

Policies and ethics