Skip to main content

The Cauchy Singular Integral Operator on Weighted Variable Lebesgue Spaces

  • Conference paper
  • First Online:
Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 236))

Abstract

Let p: ℝ → (1,∞) be a globally log-Hölder continuous variable exponent and w: ℝ →[0,∞] be a weight. We prove that the Cauchy singular integral operator s is bounded on the weighted variable Lebesgue space L p(.)(ℝ,w)= {f:f wϵL p(.)(ℝ)} if and only if the weight w satisfies

\(\mathop{sup}\limits_{-\infty<a<b<\infty}\frac{1}{b-a}\parallel w\chi_{(a,b)}\parallel_{p(.)}\parallel w^{-1}\chi_{(a,b)}\parallel_{p^{\prime}(.)}<\infty\quad (1/p(x)+1/p^{\prime}(x)=1).\)

Mathematics Subject Classification (2010). Primary 42A50; Secondary 42B25, 46E30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Álvarez and C. Pérez, Estimates with A∞ weights for various singular integral operators. Boll. Un. Mat. Ital. A (7) 8 (1994), 123–133.

    Google Scholar 

  2. C. Bennett and R. Sharpley, Interpolation of Operators. Academic Press, New York, 1988.

    Google Scholar 

  3. E.I. Berezhnoi, Two-weighted estimations for the Hardy–Littlewood maximal function in ideal Banach spaces. Proc. Amer. Math. Soc. 127 (1999), 79–87.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Cruz-Uribe, L. Diening, and P. Hästö , The maximal operator on weighted variable Lebesgue spaces. Frac. Calc. Appl. Anal. 14 (2011), 361–374.

    MATH  Google Scholar 

  5. D. Cruz-Uribe, A. Fiorenza, and C.J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces. J. Math. Anal. Appl. 394 (2012), 744–760.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Diening, P. Harjulehto, P. Hästö , and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017, Springer, Berlin, 2011.

    Google Scholar 

  7. J. Duoandikoetxea, Fourier Analysis. Graduate Studies in Mathematics 29. American Mathematical Society, Providence, RI, 2001.

    Google Scholar 

  8. A.Yu. Karlovich, Singular integral operators with piecewise continuous coefficients in reflexive rearrangement-invariant spaces. Integral Equations and Operator Theory 32 (1998), 436–481.

    Article  MathSciNet  MATH  Google Scholar 

  9. A.Yu. Karlovich, Fredholmness of singular integral operators with piecewise continuous coefficients on weighted Banach function spaces. J. Integral Equations Appl. 15 (2003), no. 3, 263–320.

    Article  MathSciNet  MATH  Google Scholar 

  10. A.Yu. Karlovich and A.K. Lerner, Commutators of singular integrals on generalized Lp spaces with variable exponent. Publ. Mat. 49 (2005), 111–125.

    Google Scholar 

  11. T. Kato, Perturbation Theory for Linear Operators. Reprint of the 1980 edition. Springer-Verlag, Berlin, 1995.

    Google Scholar 

  12. V. Kokilashvili, V. Paatashvili, and S. Samko, Boundedness in Lebesgue spaces with variable exponent of the Cauchy singular operator on Carleson curves. In: “Modern operator theory and applications”. Operator Theory: Advances and Applications 170. Birkhäuser Verlag, Basel, 2006, pp. 167–186.

    Google Scholar 

  13. V. Kokilashvili, N. Samko, and S. Samko, The maximal operator in weighted variable spaces L(). J. Funct. Spaces Appl. 5 (2007), 299–317.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Kokilashvili, N. Samko, and S. Samko, Singular operators in variable spaces L()(Ω, ρ) with oscillating weights. Math. Nachr. 280 (2007), 1145–1156.

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Kokilashvili and S. Samko, Boundedness of maximal operators and potential operators on Carleson curves in Lebesgue spaces with variable exponent. Acta Math. Sin. (Engl. Ser.) 24 (2008), 1775–1800.

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Kopaliani, Infimal convolution and Muckenhoupt A() condition in variable Lp spaces Arch. Math. (Basel) 89 (2007), 185–192.

    Article  MathSciNet  MATH  Google Scholar 

  17. A.K. Lerner, Weighted norm inequalities for the local sharp maximal function. J. Fourier Anal. Appl. 10 (2004), 465–474.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Yu. Karlovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this paper

Cite this paper

Karlovich, A.Y., Spitkovsky, I.M. (2014). The Cauchy Singular Integral Operator on Weighted Variable Lebesgue Spaces. In: Cepedello Boiso, M., Hedenmalm, H., Kaashoek, M., Montes Rodríguez, A., Treil, S. (eds) Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation. Operator Theory: Advances and Applications, vol 236. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0648-0_17

Download citation

Publish with us

Policies and ethics