Skip to main content

Quasi-Monte Carlo Methods for Multidimensional Numerical Integration

  • Chapter

Abstract

The Monte Carlo approximation to an integral is obtained by averaging values of the integrand at randomly selected nodes. Concretely, if we normalize the integration domain to be \({\bar I^S}\) = [0,1]s, s ≥ 1, then

$$\int\limits_{{{\overline I }^s}} {f\left( {\underline t } \right)} d\underline t \approx \frac{1}{N}\sum\limits_{n = 1}^N {f\left( {{{\underline x }_n}} \right),}$$
((1))

where x 1,..., x N are N independent random samples from the uniform distribution on \({\bar I^S}\) . The expected value of the integration error is O(N). The basic idea of a quasi-Monte Carlo method is to replace random nodes by well-chosen deterministic nodes, with the aim of getting a deterministic error bound that is smaller than the stochastic error bound under weak regularity conditions on the integrand.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonov, I. A., Saleev, V. M.: An economic method of computing LP τ -sequences (Russian), Ž. Vyčisl. Mat. i Mat. Fiz. 19, no. 1, 243–245 (1979).

    Google Scholar 

  2. Blümlinger, M., Tichy, R. F.: Bemerkungen zu einigen Anwendungen gleichverteilter Folgen, Sitzungsber. Österr. Akad. Wiss. Math.-Naturw. Kl. II 195, 253–265 (1986).

    Google Scholar 

  3. Borosh, I., Niederreiter, H.: Optimal multipliers for pseudo-random number generation by the linear congruential method, BIT 23, 65–74 (1983).

    Article  Google Scholar 

  4. Bourdeau, M., Pitre, A.: Tables of good lattices in four and five dimensions, Numer. Math. 47, 39–43 (1985).

    Article  Google Scholar 

  5. Braaten, E., Weiler, G.: An improved low-discrepancy sequence for multidimensional quasi-Monte Carlo integration, J. Comput. Physics 33, 249–258 (1979).

    Article  Google Scholar 

  6. Bratley, P., Fox, B. L.: Implementing Sobol’s quasirandom sequence generator, ACM Trans. Math. Software, to appear.

    Google Scholar 

  7. Bratley, P., Fox, B. L., Schrage, L. E.: A guide to simulation, 2nd ed., Springer, New York, 1987.

    Book  Google Scholar 

  8. Davis, P. J., Rabinowitz, P.: Methods of numerical integration, 2nd ed., Academic Press, New York, 1984.

    Google Scholar 

  9. de Clerck, L.: A proof of Niederreiter’s conjecture concerning error bounds for quasi-Monte Carlo integration, Adv. in Applied Math. 2, 1–6 (1981).

    Article  Google Scholar 

  10. de Clerck, L.: A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley, Monatsh. Math. 101, 261–278 (1986).

    Article  Google Scholar 

  11. Faure, H.: Discrépance de suites associées à un système de numération (en dimensions), Acta Arith. 41, 337–351 (1982).

    Google Scholar 

  12. Faure, H.: On the star-discrepancy of generalized Hammersley sequences in two dimensions, Monatsh. Math. 101, 291–300 (1986).

    Article  Google Scholar 

  13. Fishman, G. S., Moore, L. R.: An exhaustive analysis of multiplicative congruential random number generators with modulus 231 - 1, SIAM J. Sci. Stat. Comp. 7, 24–45 (1986);

    Article  Google Scholar 

  14. Fishman, G. S., Moore, L. R.: Erratum, ibid. 7, 1058 (1986).

    Article  Google Scholar 

  15. Fox, B. L.: Algorithm 647: Implementation and relative efficiency of quasirandom sequence generators, ACM Trans. Math. Software 12, 362–376 (1986).

    Article  Google Scholar 

  16. Genz, A.: Testing multidimensional integration routines, in Tools, methods and languages for scientific and engineering computation (B. Ford et al., eds.), pp. 81–94, North-Holland, Amsterdam, 1984.

    Google Scholar 

  17. Grothe, H.: Matrixgeneratoren zur Erzeugung gleichverteilter Zufallsvektoren, in Zufallszahlen und Simulationen (L. Afflerbach and J. Lehn, eds.), pp. 29–34, Teubner, Stuttgart, 1986.

    Google Scholar 

  18. Haber, S.: Parameters for integrating periodic functions of several variables, Math. Comp. 41, 115–129 (1983).

    Article  Google Scholar 

  19. Halton, J. H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math. 2, 84–90 (1960);

    Article  Google Scholar 

  20. Halton, J. H.: Berichtigung, ibid. 2, 196 (1960).

    Article  Google Scholar 

  21. Hellekalek, P.: Regularities in the distribution of special sequences, J. Number Th. 18, 41–55 (1984).

    Article  Google Scholar 

  22. Hlawka, E.: Funktionen von beschränkter Variation in der Theorie der Gleichverteilung, Ann. Mat. Pura Appl. 54, 325–333 (1961).

    Article  Google Scholar 

  23. Hlawka, E.: Zur angenäherten Berechnung mehrfacher Integrale, Monatsh. Math. 66, 140–151 (1962).

    Article  Google Scholar 

  24. Hlawka, E.: Discrepancy and Riemann integration, in Studies in pure mathematics (L. Mirsky, ed.), pp. 121–129, Academic Press, New York, 1971.

    Google Scholar 

  25. Hlawka, E.: Gleichverteilung auf Produkten von Sphären, J. reine angew. Math. 330, 1–43 (1982).

    Google Scholar 

  26. Hlawka, E., Firneis, F., Zinterhof, P.: Zahlentheoretische Methoden in der Numerischen Mathematik, Oldenbourg, Vienna, 1981.

    Google Scholar 

  27. Hua, L. K., Wang, Y.: Applications of number theory to numerical analysis, Springer, Berlin, 1981.

    Google Scholar 

  28. Kahaner, D.: Sources of information on quadrature software, in Sources and development of mathematical software (W. R. Cowell, ed.), pp. 134–164, Prentice-Hall, Englewood Cliffs, 1984.

    Google Scholar 

  29. Keast, P.: Optimal parameters for multidimensional integration, SIAM J. Numer. Anal. 10, 831–838 (1973).

    Article  Google Scholar 

  30. Klepikova, N. L.: Some properties of optimal coefficients (Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1981, no. 1, 63–68.

    Google Scholar 

  31. Knuth, D. E.: The art of computer programming, vol. 2, 2nd ed., Addison-Wesley, Reading, 1981.

    Google Scholar 

  32. Korobov, N. M.: The approximate computation of multiple integrals (Russian), Dokl. Akad. Nauk SSSR 124, 1207–1210 (1959).

    Google Scholar 

  33. Korobov, N. M.: On the computation of optimal coefficients (Russian), Dokl. Akad. Nauk SSSR 267, 289–292 (1982).

    Google Scholar 

  34. Kuipers, L., Niederreiter, H.: Uniform distribution of sequences, Wiley, New York, 1974.

    Google Scholar 

  35. Lambert, J. P.: Quasi-random sequences for optimization and numerical integration, in Numerical integration (P. Keast and G. Fairweather, eds.), pp. 193–203, Reidel, Dordrecht, 1987.

    Chapter  Google Scholar 

  36. Larcher, G.: Optimale Koeffizienten bezüglich zusammengesetzter Zahlen, Monatsh. Math. 100, 127–135 (1985).

    Article  Google Scholar 

  37. Larcher, G.: Über die isotrope Diskrepanz von Folgen, Arch. Math. 46, 240–249 (1986).

    Article  Google Scholar 

  38. Larcher, G.: On the distribution of sequences connected with good lattice points, Monatsh. Math. 101, 135–150 (1986).

    Article  Google Scholar 

  39. Larcher, G.: A best lower bound for good lattice points, Monatsh. Math. 104, 45–51 (1987).

    Article  Google Scholar 

  40. Larcher, G., Niederreiter, H.: Optimal coefficients modulo prime powers in the three-dimensional case, preprint, 1987.

    Google Scholar 

  41. Lidl, R., Niederreiter, H.: Finite fields, Addison-Wesley, Reading, 1983.

    Google Scholar 

  42. Lyness, J. N.: Some comments on quadrature rule construction criteria, this volume.

    Google Scholar 

  43. Morgan, B. J. T.: Elements of simulation, Chapman & Hall, London, 1984.

    Book  Google Scholar 

  44. Mullen, G. L., Niederreiter, H.: Optimal characteristic polynomials for digital multistep pseudorandom numbers, Computing 39, 155–163 (1987).

    Article  Google Scholar 

  45. Niederreiter, H.: Methods for estimating discrepancy, in Applications of number theory to numerical analysis (S. K. Zaremba, ed.), pp. 203–236, Academic Press, New York, 1972.

    Google Scholar 

  46. Niederreiter, H.: Application of diophantine approximations to numerical integration, in Diophantine approximation and its applications (C. F. Osgood, ed.), pp. 129–199, Academic Press, New York, 1973.

    Google Scholar 

  47. Niederreiter, H.: Pseudo-random numbers and optimal coefficients., Adv. in Math. 26, 99–181 (1977).

    Article  Google Scholar 

  48. Niederreiter, H.: Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84, 957–1041 (1978).

    Article  Google Scholar 

  49. Niederreiter, H.: Existence of good lattice points in the sense of Hlawka, Monatsh. Math. 86, 203–219 (1978).

    Article  Google Scholar 

  50. Niederreiter, H.: The serial test for pseudo-random numbers generated by the linear congruential method, Numer. Math. 46, 51–68 (1985).

    Article  Google Scholar 

  51. Niederreiter, H.: Multidimensional numerical integration using pseudorandom numbers, Math. Programming Study 27, 17–38 (1986).

    Article  Google Scholar 

  52. Niederreiter, H.: Dyadic fractions with small partial quotients, Monatsh. Math. 101, 309–315 (1986).

    Article  Google Scholar 

  53. Niederreiter, H.: Pseudozufallszahlen und die Theorie der Gleichverteilung, Sitzungsber. Österr. Akad. Wiss. Math.-Naturw. Kl. II 195, 109–138 (1986).

    Google Scholar 

  54. Niederreiter, H.: A pseudorandom vector generator based on finite field arithmetic, Math. Japonica 31, 759–774 (1986).

    Google Scholar 

  55. Niederreiter, H.: Low-discrepancy point sets, Monatsh. Math. 102, 155–167 (1986).

    Article  Google Scholar 

  56. Niederreiter, H.: A statistical analysis of generalized feedback shift register pseudorandom number generators, SIAM J. Sci. Stat. Comp. 8, 1035–1051 (1987).

    Article  Google Scholar 

  57. Niederreiter, H.: Point sets and sequences with small discrepancy, Monatsh. Math. 104, 273–337 (1987).

    Article  Google Scholar 

  58. Niederreiter, H.: The serial test for digital k-step pseudorandom numbers, Math. J. Okayama Univ., to appear.

    Google Scholar 

  59. Niederreiter, H.: Low-discrepancy and low-dispersion sequences, J. Number Th., to appear.

    Google Scholar 

  60. Proinov, P. D.: Discrepancy and integration of continuous functions, J. Approximation Th., to appear.

    Google Scholar 

  61. Rubinstein, R. Y.: Simulation and the Monte Carlo method, Wiley, New York, 1981.

    Book  Google Scholar 

  62. Sarkar, P. K., Prasad, M. A.: A comparative study of pseudo and quasi random sequences for the solution of integral equations, J. Comput. Physics 68, 66–88 (1987).

    Article  Google Scholar 

  63. Shi, S. Z.: Estimate of error for quadrature of a multidimensional continuous function (Chinese), Math. Numer. Sinica 3, 360–364 (1981).

    Google Scholar 

  64. Sloan, I. H.: Lattice methods for multiple integration, J. Comput. Appl. Math. 12/13, 131–143 (1985).

    Article  Google Scholar 

  65. Sloan, 1. H.: Lattice rules — classification and searches, this volume.

    Google Scholar 

  66. Sloan, I. H., Kachoyan, P. J.: Lattices for multiple integration, in Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 6, pp. 147–165, Austral. Nat. Univ., Canberra, 1984.

    Google Scholar 

  67. Sloan, I. H., Kachoyan, P. J.: Lattice methods for multiple integration: theory, error analysis and examples, SIAM J. Numer. Anal. 24, 116–128 (1987).

    Article  Google Scholar 

  68. Sloan, I. H., Lyness, J. N.: The representation of lattice quadrature rules as multiple sums, preprint, 1987.

    Google Scholar 

  69. Sloan, I. H., Osborn, T. R.: Multiple integration over bounded and unbounded regions, J. Comput. Appl. Math. 17, 181–196 (1987).

    Article  Google Scholar 

  70. Sobol’, I. M.: The distribution of points in a cube and the approximate evaluation of integrals (Russian), 2. Vycisl. Mat. i Mat. Fiz. 7, 784–802 (1967).

    Google Scholar 

  71. Sobol’, I. M.: Points that uniformly fill a multidimensional cube (Russian), Matematika Kibernetika, no. 2, Izdat. “Znanie”, Moscow, 1985.

    Google Scholar 

  72. Srinivasan, S.: On two-dimensional Hammersley’s sequences, J. Number Th. 10, 421–429 (1978).

    Article  Google Scholar 

  73. Sugihara, M.: Method of good matrices for multi-dimensional numerical integrations — an extension of the method of good lattice points, J. Comput. Appl. Math. 17, 197–213 (1987).

    Article  Google Scholar 

  74. Sugihara, M., Murota, K.: A note on Haselgrove’s method for numerical integration, Math. Comp. 39, 549–554 (1982).

    Google Scholar 

  75. Tichy, R. F.: Ober eine zahlentheoretische Methodezur numerischen Integration und zur Behandlung von Integralgleichungen, Sitzungsber. Österr. Akad. Wiss. Math.-Naturw. Kl. II 193, 329–358 (1984).

    Google Scholar 

  76. Wang, Y.: On Diophantine approximation and approximate analysis I, II, Acta Math. Sinica 25, 248–256, 323–332 (1982).

    Google Scholar 

  77. Zaremba, S. K.: Good lattice points modulo composite numbers, Monatsh. Math. 78, 446–460 (1974).

    Article  Google Scholar 

  78. Zinterhof, P.: Gratis lattice points for multidimensional integration, Computing 38, 347–353 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Basel AG

About this chapter

Cite this chapter

Niederreiter, H. (1988). Quasi-Monte Carlo Methods for Multidimensional Numerical Integration. In: Braß, H., Hämmerlin, G. (eds) Numerical Integration III. International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, vol 85. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6398-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6398-8_15

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2205-2

  • Online ISBN: 978-3-0348-6398-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics